
The Process
A running program

From Program to Process

To make the program’s code and data come alive

need a CPU

need memory — the process’ address space

for data, code, stack, heap

need registers

PC, SP, regular registers

need access to I/O

list of open files

A First Cut at the API

Create

causes the OS to create a new process

Destroy

forcefully terminates a process

Wait (for the process to end)

Other controls

e.g. to suspend or resume the process

Status

running? suspended? blocked? for how long?

How the OS Keeps Track
of a Process

A process has code

OS must track program counter

A process has a stack

OS must track stack pointer

OS stores state of process
in Process Control Block (PCB)

Data (program instructions, stack & heap)
resides in memory, metadata is in PCB

PC
Stack Ptr
Registers

PID
UID

Priority
List of open files
Process status

Kernel stack ptr
…

Process Control
Block

You’ll Never Walk Alone

Machines run (and thus OS must manage)
multiple processes

how should the machine’s resources be mapped
to these processes?

OS as a referee…

You’ll Never Walk Alone

Machines run (and thus OS must manage)
multiple processes

how should the machine’s resources be mapped
to these processes?

Enter the illusionist!

give every process the illusion of running
on a private CPU

which appears slower than the machine’s

give every process the illusion of running
on a private memory

which may appear larger(??) than the machine’s

Virtualize

the CPU}

Virtualize

memory}

Isolating Applications
Buggy apps can crash
other apps

Buggy apps can crash OS

Buggy apps can hog all
resources

Malicious apps can violate
privacy of other apps

App 1 App 2 App 3

Operating System

Reading and writing memory,
managing resources, accessing I/O...

Malicious apps can
change the OS

Mechanism and Policy

Mechanism

what the system can do

Policy

what the system should do

Mechanisms should not determine policies!

The Process, Refined
An abstraction for isolation

the execution of an application
program with restricted rights

The enforcing mechanism
must not hinder functionality

still efficient use of hardware

enable safe communication

App 1

OS

Hardware

The Process, Refined
An abstraction for isolation

the execution of an application
program with restricted rights

The enforcing mechanism
must not hinder functionality

still efficient use of hardware

enable safe communication

App 1

OS

Hardware

Special

The process abstraction is enforced by the
kernel

all kernel is in the OS

not all the OS is in the kernel

(why not? robustness)

widgets libraries, window managers etc

How can the OS
Enforce Restricted Rights?

Easy: kernel interprets each instruction!

App 1

OS

Hardware

slow

many instructions are safe:
do we really need to
involve the OS?

How can the OS
enforce restricted rights?

Mechanism: Dual Mode Operation

hardware to the rescue: use a
mode bit

in user mode, processor checks
every instruction

in kernel mode, unrestricted rights

hardware to the rescue (again)
to make checks efficient

App 1

OS

Hardware

Amongst our weaponry are
such diverse elements as…

Privileged instructions

in user mode, no way to execute potentially unsafe
instructions

Memory isolation

in user mode, memory accesses outside a process’
memory region are prohibited

Timer interrupts

kernel must be able to periodically regain control from
running process

I. Privileged instructions

Set mode bit

I/O ops

Memory management ops

Disable interrupts

Set timers

Halt the processor

I. Privileged instructions

But how can an app do I/O then?

system calls achieve access to kernel mode
only at specific locations specified by OS

Executing a privileged instruction while in
user mode (naughty naughty…) causes a
processor exception….

...which passes control to the kernel

Crossing the line
user process

kernel

user process executing calls system call return from system call

execute system call

 trap

mode bit := 0

 mode bit := 1

return

mode bit = 1

mode bit = 0

II. Memory Protection

Virtual address space: set of memory
addresses that process can “touch”

CPU works with virtual addresses

Physical address space: set of memory
addresses supported by hardware

Virtual
address
space

Stack

Code

Initialized data

Heap

DLL’s

mapped segments

Step 1: Virtualize Memory

II. Memory Isolation

Implement a function mapping

a486d9

5e3a07

Virtual Physical

Advantages:

isolation

relocation

data sharing

multiplexing

⟨pid, virtual address⟩ physical address

pi

Step 2: Address Translation

into

Isolation
At all times, functions used by different processes
map to disjoint ranges — aka “Stay in your room!”

pi

pj

Relocation

The range of the function used by a process
can change over time

pi

Relocation

The range of the function used by a process
can change over time — “Move to a new room!”

pi

Data Sharing
Map different virtual addresses of distinct
processes to the same physical address —
“Share the kitchen!”

pi

pj
5e3a07

04d26a

119af3

Multiplexing
Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that
maps to a given range of physical addresses —
ever lived in a studio?

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

Multiplexing

The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

pi

More Multiplexing

At different times, different processes can map
part of their virtual address space into the
 same physical memory — change tenants!

pi

pj

More Multiplexing

pi

pj

At different times, different processes can map
part of their virtual address space into the
 same physical memory — change tenants!

A simple mapping mechanism:
Base & Bound

CPU

Bound

Register

Base

Register

1500

1000

0

MAXsys

500 1000

p’s physical
address
space

≤ +yes

no

Memory

Exception

Logical

addresses

Physical

addresses

On Base & Limit

Contiguous Allocation: contiguous virtual
addresses are mapped to contiguous physical
addresses

Isolation is easy, but sharing is hard

Two copies of emacs: want to share code, but
have heap and stack distinct...

And there is more…

Hard to relocate

Hard to account for dynamic changes in both
heap and stack

