The Process

A running program

A First Cut at the API

@ Create
0 causes the OS to create a new process

@ Destroy
o forcefully terminates a process

@ Wait (for the process to end)

@ Other controls
o e.g. to suspend or resume the process

@ Status
D running? suspended? blocked? for how long?

A8

From Program fo Process

@ To make the programs code and data come alive

o need a CPU

0 need memory — the process’ address space

» for data, code, stack, heap
need registers

» PC, SP, regular registers
need access to I/0

» list of open files

wossy, oW

g e — T

How the OS Keeps Track

of a Process

@ A process has code

o OS must track program counter

@ A process has a stack

o OS must track stack pointer
® OS stores state of process
in Process Control Block (PCB)

o Data (program instructions, stack & heap)
resides in memory, metadata is in PCB

Process Control
Block

PG
Stack Ptr
Registers
PID
UID
Priority
List of open files
Process status
Kernel stack ptr

You'll Never Walk Alone

@ Machines run (and thus OS must manage)
multiple processes

o how should the machines resources be mapped
to these processes?

@ OS as a referee... \/K\ ;

Isolating Applications

Buggy apps can crash
other apps

@ ! @ l Buggy apps can crash OS

Buggy apps can hog all

resources

Operating System

Malicious apps can violate

Reading and writing memory, privacy of other apps

managing resources, accessing I/0...

Malicious apps can
change the OS

You'll Never Walk Alone

@ Machines run (and thus OS must manage)
multiple processes

o how should the machines resources be mapped
to these processes? + ¥

X
o Enter the illusionist! _xg'¢_

Virtualize

the CPU

D give every process the illusion of running
on a private CPU }

» which appears slower than the machine’s

Virtualize

on a private memory enory

o give every process the illusion of running }

> which may appear larger(??) than the machine’s

Mechanism and Policy

@ Mechanism
0 what the system can do

@ Policy
o what the system should do

Mechanisms should not determine policies!

The Process, Refined The Process, Refined

@ An abstraction for isolation @ An abstraction for isolation

o the execution of an application

o the execution of an application
program with restricted rights

program with restricted rights

s

@ The enforcing mechanism Cilag s " v

@ The enforcing mechanism
must not hinder functionality

0s must not hinder functionality

o still efficient use of hardware

W T o still efficient use of hardware
Hardware

W A
o Hardware
o enable safe communication — 2

o enable safe communication

How can the OS
Enforce Restricted Rights?

Special ¢3¢

@ The process abstraction is enforced by the
kernel @ Easy: kernel interprets each instruction!

o all kernel is in the OS

D not all the OS is in the kernel o slow

> (why not? robUSHEss) . ..,.. O many instructions are safe:

e do we really need tfo
> widgets libraries, window managers etc 0s involve the OS?

o
Hardware

How can the OS Amongst our weaponry are
enforce restricted rights? such diverse elements as...

Mechanism: Dual Mode Operation D Privileged instructions

» in user mode, no way to execute potentially unsafe
0 hardware to the rescue: use a ifs T ichions

mode bit

® in user mode, processor checks
every instruction

0 Memory isolation

» in user mode, memory accesses outside a process’
memory region are prohibited
® in kernel mode, unrestricted rights

0 hardware to the rescue (again) o Timer inferrupts

to make checks efficient > kernel must be able to periodically regain control from
running process

I. Privileged instructions I. Privileged instructions

@ Set mode bit @ But how can an app do I/0 then?

o 1/0 ops o system calls achieve access to kernel mode
only at specific locations specified by OS

@& Memory management ops
Z J P @ Executing a privileged instruction while in

@ Disable interrupts user mode (naughty naughty...) causes a

processor exception....

Set ti
@ Set Timers o..which passes control to the kernel

@ Halt the processor

Crossing the line

b 4 i T e b il "‘.-‘ b A il
. b | - i
user process executing [F====H calls system call return from system call

T
o R

mode bit :=1

mode bit := O return

kernel

mode bit = 0

execute system call

b

II. Memory Isolation

Step 2: Address Translation

@ Implement a function mapping
(pid, virtual address) into physical address

Virtual Physical

Advantages:

@ isolation

@ relocation 5¢3a07
@ data sharing

@ multiplexing

II. Memory Protection

Step 1: Virtualize Memory

@ Virtual address space: set of memory
addresses that process can “touch”

o CPU works with virtual addresses

@ Physical address space: set of memory
addresses supported by hardware

Virtual

address [*

space

Isolation

mapped segments

Heap

| Initialized data
Gl LR

Code

@ At all times, functions used by different processes
map to disjoint ranges — aka “Stay in your room!”

Relocation

@ The range of the function used by a process
can change over time

Data Sharing

@ Map different virtual addresses of distinct
processes to the same physical address —
“Share the kitchen!”

5e3a07

Relocation

@ The range of the function used by a process
can change over time —“Move to a new room!”

Multiplexing

@ Create illusion of almost infinite memory by
changing domain (set of virtual addresses) that
maps to a given range of physical addresses —
ever lived in a studio?

Multiplexing

® The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

® The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

® The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

Multiplexing

® The domain (set of virtual addresses) that map
to a given range of physical addresses can
change over time

More Multiplexing

@ At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenants!

A simple mapping mechanism:
Base & Bound

Memory
Exception

LOgiCdl no thSiCCll 1500

addresses A \ addresses s physicat
@ “S;“ O P P

ves address
T I Space |

500 1(0]0]0)

Bound Base
Register Register

More Multiplexing

@ At different times, different processes can map
part of their virtual address space into the
same physical memory — change tenants!

On Base & Limit

@ Contiguous Allocation: contiguous virtual

addresses are mapped fo contiguous physical
addresses

@ Isolation is easy, but sharing is hard

@ Two copies of emacs: want to share code, but
have heap and stack distinct...

@ And there is more...
o Hard to relocate

@ Hard fo account for dynamic changes in both
heap and stack

