CS 4410
Operating Systems

Security (2)

Summer 2016

Cornell University



Today

 Access control
e DAC
e MAC



Access control

* Confidentiality and integrity are often
enforced using access control.

— Predefined operations are the sole means by
which principals access information.

— A reference monitor is consulted whenever one of
these predefined operations is invoked.

— The operation is allowed only if the invoker holds
the required privileges.



Discretionary Access Control (DAC)

* |[n a DAC policy, the owner of an object
controls the assighment of privileges for this
objects to principals.

* DAC policies are what commercial operating
systems typically enforce.

* The assignment of privileges by a DAC policy
can be depicted using a table Auth that has a
row for each principal and a column for each
object.



Auth

Objects
notes.txt | beach.img sort.py
© | Ann r,W r r
S
‘G | Beth r LW
=
a | George r r

Any DAC policy can be circumvented if principals are
permitted to make arbitrary changes to Auth.

— Yet as execution of a system proceeds, changes to Auth will
inevitably be needed.



Protection Domains

Having users as the set of principals is too coarse-
grained.

Principle of Least Privilege: the set of operations a
principal should be authorized to execute depends
on the task to be performed.

Use protection domains as the set of principals,
instead.

Each protection domain is associated with a different
set of privileges.



Domains

Protection Domains

Objects
notes.txt beach.img sort.py
Ann@edit r,w r
Ann@view r
Beth@edit rw
Beth@view r
George@edit r r

George@view




Protection Domains

e Allow transitions from one protection domain
to another as execution of a thread proceeds.

* Different sets of privileges can now be
associated with a thread as it progresses from
one task to the next.

* |n an operating system, system calls may cause
protection-domain transitions.

— Example: change from user mode to kernel mode.



Implementing DAC

Auth is sparse. So, implementing Auth as an array is not
efficient.

Need data structures that store only the non-empty cells of
Auth.
Two approaches:

— An access control list encodes the non-empty cells associated
with a column (object).

— A list of capabilities encode the non-empty cells associated with
a row (principal).
Access control lists and capabilities can, in theory, express
the same policies.

In practice, they differ in the cost of performing revocation
and review.



Access Control Lists

The access control list for an object O is a list
<P1; Privileges1> <P2; Privileges2> ... <PN; PrivilegesN>

Operating system abstractions (e.g., files, sockets, locks)
can be protected with access control lists.

System calls are then the only way to access an operating
system abstraction.

— A reference monitor is embedded in the operating system
routine that handles a system call.

Large operating system abstractions (e.g., files) can store
their own access control lists.

For small operating system abstractions (e.g., locks or
ports), the operating system's memory can be used to store
the access control lists.



Capabilities

A capability is a pair <O; Privileges>.
Any principal that holds this capability is granted
Privileges for operations on O.

Assumption: Capabilities cannot be counterfeited or
corrupted.
An authorized principal P can:

— create a new object and receive a capability for that
object,

— transfer to other principals one or more capabilities P
holds, and

— revoke capabilities that derive from capabilities P holds.



DAC in Unix: Accessing a file

Authorization to access a file is partitioned into

— a potentially expensive check, which is done infrequently,

— and cheaper checks, which are performed for each file access.
The expensive check is moved into an additional system call.

— This open system call for a file must be executed prior to attempting read or
write system calls on that file.

— The access control list of the file specifies if the open system call is successful.

The constraint that open be executed first is enforced because read and
write require a file handle argument.

A file handle can be considered as a capability.

Subsequent read and write systems call use this file handle to access the
file.

The hybrid of access control lists and capability-like authorization is not a
panacea.

Its latency for revocations can be unbounded, because the access control
list is not rechecked each time read and write execute.

12



Mandatory Access Control (MAC)

With DAC, the owner specifies allowed
operation on the object.

The goals of an institution, however, might not
align with those of any individual.

So rules set by the institution are the more
natural basis for authorization.

MAC: the institution specifies rules for
authorization.

13



Mandatory Access Control (MAC)

A classification L(D) is assigned to each document

D.
A clearance L(U) is assigned to each person U.

L maps to a set of labels.

— Example: Top Secret (TS), Secret (S), Confidential (C),
Unclassified (U).

— The institution decides L(D) and L(U).

Confidentiality Policy. A person U is permitted to

see a document D only if L(D) £ L(U) holds,
— where: U<C<S<TS.

14



MAC: Confidentiality

* Program Invocation. L(Pgm) < L(U) must hold
for a program Pgm executing on behalf of a

user U.

* Read Restriction. L(F) < L(Pgm) must hold for
program Pgm to read a file F.

e Write Restriction. L(Pgm) < L(F) must to hold
for a program Pgm to write into a file F.



 Access control
e DAC
e MAC

Today

16



Coming up...

e Next lecture: Review

e Student evaluation

17



