
1

CS 4410
Operating Systems

Security (2)

Summer 2016

Cornell University

Today

• Access control

• DAC

• MAC

2

Access control

• Confidentiality and integrity are often
enforced using access control.

– Predefined operations are the sole means by
which principals access information.

– A reference monitor is consulted whenever one of
these predefined operations is invoked.

– The operation is allowed only if the invoker holds
the required privileges.

3

Discretionary Access Control (DAC)

• In a DAC policy, the owner of an object
controls the assignment of privileges for this
objects to principals.

• DAC policies are what commercial operating
systems typically enforce.

• The assignment of privileges by a DAC policy
can be depicted using a table Auth that has a
row for each principal and a column for each
object.

4

Auth

• Any DAC policy can be circumvented if principals are
permitted to make arbitrary changes to Auth.

– Yet as execution of a system proceeds, changes to Auth will
inevitably be needed.

notes.txt beach.img sort.py

Ann r,w r r

Beth r r,w

George r r

Objects
P

ri
n

ci
p

al
s

5

Protection Domains

• Having users as the set of principals is too coarse-
grained.

• Principle of Least Privilege: the set of operations a
principal should be authorized to execute depends
on the task to be performed.

• Use protection domains as the set of principals,
instead.

• Each protection domain is associated with a different
set of privileges.

6

Protection Domains

7

notes.txt beach.img sort.py

Ann@edit r,w r

Ann@view r

Beth@edit r,w

Beth@view r

George@edit r r

George@view

Objects

D
o

m
ai

n
s

Protection Domains

• Allow transitions from one protection domain
to another as execution of a thread proceeds.

• Different sets of privileges can now be
associated with a thread as it progresses from
one task to the next.

• In an operating system, system calls may cause
protection-domain transitions.

– Example: change from user mode to kernel mode.

8

Implementing DAC

• Auth is sparse. So, implementing Auth as an array is not
efficient.

• Need data structures that store only the non-empty cells of
Auth.

• Two approaches:
– An access control list encodes the non-empty cells associated

with a column (object).
– A list of capabilities encode the non-empty cells associated with

a row (principal).

• Access control lists and capabilities can, in theory, express
the same policies.

• In practice, they differ in the cost of performing revocation
and review.

9

Access Control Lists

• The access control list for an object O is a list
 <P1; Privileges1> <P2; Privileges2> … <PN; PrivilegesN>

• Operating system abstractions (e.g., files, sockets, locks)
can be protected with access control lists.

• System calls are then the only way to access an operating
system abstraction.
– A reference monitor is embedded in the operating system

routine that handles a system call.

• Large operating system abstractions (e.g., files) can store
their own access control lists.

• For small operating system abstractions (e.g., locks or
ports), the operating system's memory can be used to store
the access control lists.

10

Capabilities

• A capability is a pair <O; Privileges>.

• Any principal that holds this capability is granted
Privileges for operations on O.

• Assumption: Capabilities cannot be counterfeited or
corrupted.

• An authorized principal P can:
– create a new object and receive a capability for that

object,

– transfer to other principals one or more capabilities P
holds, and

– revoke capabilities that derive from capabilities P holds.

11

DAC in Unix: Accessing a file

• Authorization to access a file is partitioned into
– a potentially expensive check, which is done infrequently,
– and cheaper checks, which are performed for each file access.

• The expensive check is moved into an additional system call.
– This open system call for a file must be executed prior to attempting read or

write system calls on that file.
– The access control list of the file specifies if the open system call is successful.

• The constraint that open be executed first is enforced because read and
write require a file handle argument.

• A file handle can be considered as a capability.
• Subsequent read and write systems call use this file handle to access the

file.
• The hybrid of access control lists and capability-like authorization is not a

panacea.
• Its latency for revocations can be unbounded, because the access control

list is not rechecked each time read and write execute.

12

Mandatory Access Control (MAC)

• With DAC, the owner specifies allowed
operation on the object.

• The goals of an institution, however, might not
align with those of any individual.

• So rules set by the institution are the more
natural basis for authorization.

• MAC: the institution specifies rules for
authorization.

13

Mandatory Access Control (MAC)

• A classification L(D) is assigned to each document
D.

• A clearance L(U) is assigned to each person U.

• L maps to a set of labels.
– Example: Top Secret (TS), Secret (S), Confidential (C),

Unclassified (U).

– The institution decides L(D) and L(U).

• Confidentiality Policy. A person U is permitted to
see a document D only if L(D) ≤ L(U) holds,
– where: U ≤ C ≤ S ≤ TS.

14

MAC: Confidentiality

• Program Invocation. L(Pgm) ≤ L(U) must hold
for a program Pgm executing on behalf of a
user U.

• Read Restriction. L(F) ≤ L(Pgm) must hold for
program Pgm to read a file F.

• Write Restriction. L(Pgm) ≤ L(F) must to hold
for a program Pgm to write into a file F.

15

Today

• Access control

• DAC

• MAC

16

Coming up…

• Next lecture: Review

• Student evaluation

17

