CS 4410
 Operating Systems

Networking:

Network Layer

Summer 2016
Cornell University

Today

- How can two computers communicate in a WAN?

Protocol Stack

WAN

- Usually, thousands of computers need to be interconnected.
- The capabilities that LANs offer cannot support larger networks.
- We need more services than the Link Layer offers.
- Why?
- Clever Naming
- Efficient forwarding/routing of messages.

Network Layer

- Mission: Transfer messages from the source-computer to the destination-computer.
- Attention: this is different from the mission of the Link Layer.
- Services:
- Forwarding / Routing
- Guaranteed delivery, bandwidth, etc
- Security
- Not all the protocols support these services.
- The Network Layer protocol depends on the kind of network we want to built:
- Virtual-circuit networks
- Datagram networks
- Necessary network device:
- Router: It knows where to forward the message.

Network Layer

- Virtual-circuit networks
- 3 phases
- Establish a virtual circuit.
- The Network Layer finds the path from the source to the destination.
- Reserve resources for the virtual circuit.
- Transfer data

- Packets pass through the virtual circuit.
- Destroy virtual circuit.
- Release resources.
- Disadvantages?
- Datagram networks
- Every packet has the destination address and it is routed independently in the network.
- The router uses the destination address to
 forward the packet towards the destinationcomputer.

IP

- Network Layer Protocol for the Internet:
- Internet Protocol
- For Datagram networks.
- IPv4, IPv6
- Datagram structure:

Version	Header Length	Type of service		Length
Identification			Flags	Fragment Offset
Time to live		Protocol		er Checksum
Source IP Address (32-bit)				
Destination IP Address				
Options				
Data				

Naming

- All the computers in the Internet have one or more IP addresses.
- For IPv4:
- 32 bits
- Dotted-decimal notation (Ex: 147.76.89.4)
- Contain information about the subnetwork in which a host belongs.
- Example: For the address 140.251.27.18 we know that:
- It belongs to a host in Cornell, as Cornell gives addresses of the form 140.251.xxx.xxx. \rightarrow subnetwork address 140.251.0.0/16, mask 255.255.0.0
- It belongs in host in Linguistics Department, as the addresses of this department is 140.251.27.xxx. \rightarrow subnetwork address 140.251.27.0/24, mask 255.255.255.0
- The number 18 distinguish this host from other hosts in the same subnetwork of Linguistics.
- Assigned by a DHCP server in the subnetwork.
- Dynamic Host Configuration Protocol
- Every computer that is inserted in the subnetwork, communicated with the DHCP server to obtain an IP address.

What happens when 223.1.1.1 wants to send a packet to 223.1.3.2 ?

Forwarding

Each router has a routing table.

- The routing table is an array of triples (at least).
- Each tuple has:
. Subnetwork id, subnetwork mask, gateway
- So, the routing table of the previous example is:
- 223.1.1.0, 255.255.255.0, 0
. 223.1.3.0, 255.255.255.0, 1
- 223.1.2.0, 255.255.255.0, 2
- When a datagram is received, all the subnetwork masks are applied to its IP address (binary AND operation) to find the subnetwork in which the destination belongs.
. So, a datagram with destination to 223.1.3.2 is forwarded to gateway 1.

Forwarding

- Even though we know the destination IP, we do not know the MAC address of 223.1.3.2, in order the packet to go from the gateway 1 to the destination.
- With the ARP protocol the router asks which node of one subnetwork has the needed IP.
- The destination replies with its MAC address.
. Finally, the packet can be sent to the destination.

Routine Aisorithms

- How does the router construct its routing table?
- The routing path should be the shortest path from the source to the destination.
- General problem:
- \quad Graph (V, E)
- $\quad V$ is the set of routers.
- E is the set of links between the routers.
- Each edge has a cost related to the distance.
- If the source is attached to the router V1 and the destination to the router V 2 , what is the shortest path between V1 and V2?

Network Layer

Computer A

Computer B

Network Layer

Today

- How can two computers communicate in a WAN?

Coming up...

- Next lecture: Routing algorithms

