CS 4410 Operating Systems

Networking: Introduction

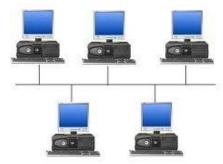
Summer 2016 Cornell University

Today

- The role of OS in computer networking.
- To appreciate this role we give a summary of the networking principles.

Communication

- It is in our nature to communicate:
 - Our voice needs a means to be transmitted.
 - We, usually, use a protocol to make the communication effective.
 - We group the information into chunks.
 - We should speak the same language.
 - We don not speak if somebody else is speaking.



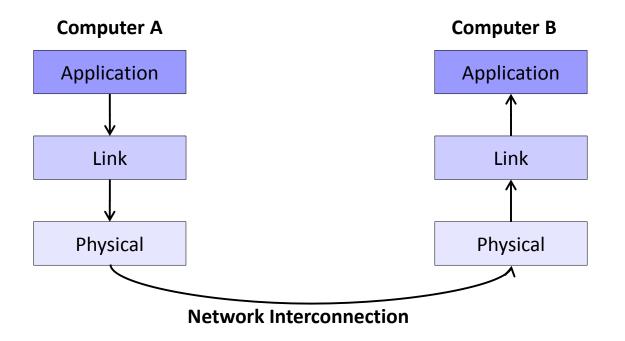
Communication

- People save data, information in computers.
- It was a logical consequence the realization of the communication between the computers.
- Example: Scientists who exchange data.
- Today: Internet, Email, VoIP, Web, Social network, ...
- But how do the computers exchange data?

Computer Network

- First, computers should be interconnected with each other, forming a network.
- Depending on the interconnection means, we have:
 - Wired networks
 - Wireless networks
- Depending on the size of the network, we have:
 - Local Area networks (LANs)
 - Wide Area networks (WANs)

Network Protocols

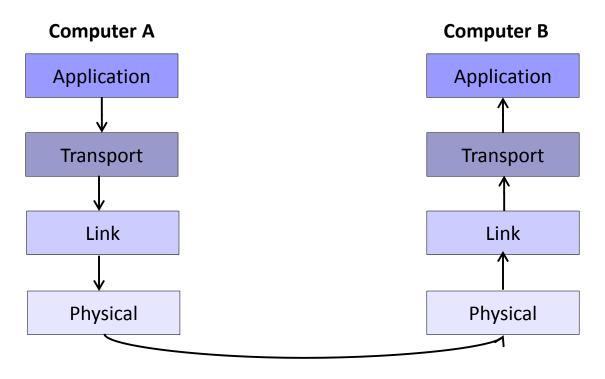

- Then, we should define how data will be sent between connected computers.
- Computers should "agree" on the way the digital information is transmitted through the network.
- Interconnected computers should use the same network protocols.

Suppose:

٠

- We have a reliable, small, wired computer network (LAN).
- The interconnected computers run only one network application.
- The network application is a simple email program, with which a user writes a text and sends it to another interconnected computer.
- Questions:
 - How is the data going to be transmitted?
 - Probably into packets.
 - How can we name the computer that should receive the email?
 - Each packet reaches every interconnected computer.
 - Only the receiver should read the packet.
 - We can assign static ids to computers.
 - How do we incorporate this information into the actual data (text)?
 - We add a header in-front of each packet (destination, packet id, size).

- So:
 - We have the level of the application, in which the text is created.
 - We need a 2nd level, which takes the text and the destination, splits the text into packets and adds a header to each packet.
 - Finally, we need a 3rd layer that will take each packet (in bytes) and will convert it into an electromagnetic signal.
 - The electromagnetic signal is transmitted to the common interconnection means.
 - The receiver-computer (3rd layer) gets the signal and converts it into packet (sequence of bytes).
 - The 3rd layer passes the packet to the 2nd layer.
 - The 2nd layer reads the header and verifies that this computer is the receiver.
 - Then, it removes the header and saves the rest of the packet in a buffer.
 - When the data is received, the 2nd layer passes the buffer to the application layer.
 - The application layer reads the data and prints it as a text to the user.

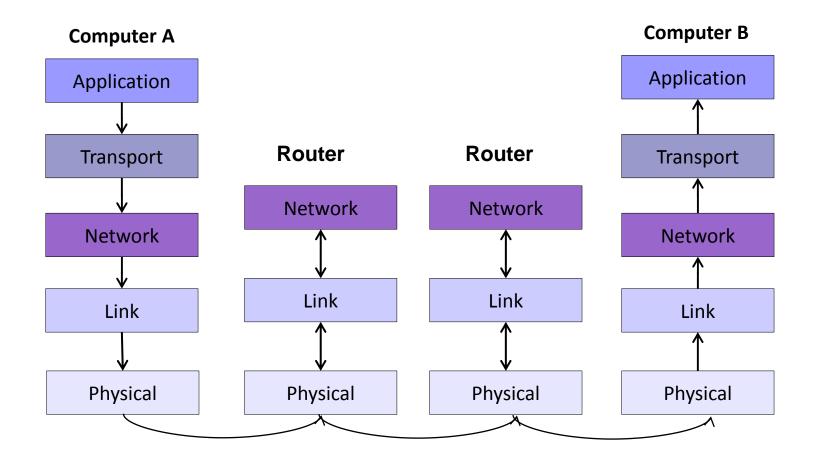

Suppose:

٠

٠

- We have a reliable, small, wired computer network (LAN).
- The interconnected computers run only one network application.
- The network application is a simple email program, with which a user writes a text and sends it to another interconnected computer.
- Questions:
 - How will we distinguish the different network applications?
 - We should assign an identity number (port) to each application.
 - How are we going to deal with packet loss and reordering?
 - We can take an action and correct the mistake or we can afford it.

- So:
 - Between the Application and the Link Layer, we add the Transport Layer.
 - The Transport Layer splits the text into packets, if need be, and at every packet adds a header.
 - The header has at least the port of the corresponding application (email) at the receiver.
 - If we want to retransmit lost packets or keep the correct order of received packets at the receiver, the Transport Layer of the sender writes the needed information in the header.
 - Then, the Transport Layer forward the packets to the Link Layer.
 - The remaining steps are the same as these of the Case 1.
 - The Transport Layer of the receiver keeps internal states to correct possible packet lost or reordering. It, also, reassembles the text and forwards it to the application.



Network Interconnection

- Suppose:
 - We have a reliable, small, wide wired computer network (WAN).
 - The interconnected computers run only one network application.
 - The network application is a simple email program, with which a user writes a text and sends it to another interconnected computer.
- Questions:
 - How will the computers be connected with each other?
 - One common interconnection means is not enough.
 - We should define subnetworks of computers.
 - The subnetworks will be connected with each other using specific devices (routers).
 - How can we identify the computer that should receive the email?
 - We should give to the computer a second name (address).
 - The name should help the process to find the destination.
 - It should be an indication about the subnetwork that contains the destination.
 - How can the message find the destination?
 - Every packet should ask the routers which direction it should take to reach the destination.
 (Routing)

So:

- We add between the Transport and the Link Layer, the Network Layer.
- The Network Layer takes the packet from the Transport Layer and adds a new header.
- The header contains at least the address of the destination.
- The Network Layer forwards the new packet to the Link Layer.
- When the packet reaches the interconnection means of the subnetwork, a specific device will see that the packet's destination is in a different subnetwork and it will send it to the next router.
- After packet being routed through the network, it reaches the subnetwork of the destination.
- Using the id that exists in the header of the Link Layer, the packet reaches the destination.

Today

- The role of OS in computer networking.
- To appreciate this role we give a summary of the networking principles.

Coming up...

- Next lecture: Physical and link layer
- HW4 is due today