
CS 4410
Operating Systems

Review 1

Summer 2016

Cornell University

1

2

A modern computer system

Graphics
adapter

CPU Disk controller USB controller

disks
mouse

keyboard

printer

monitor

memory

app

OS device

driver

app app

device

driver

3

HW-OS interface

memory

CPU

device

application

OS device
driver

device
controller

4

OS-App interface

memory

CPU

device

OS device
driver

device
controller

application

From program code to a process

Program
code

Executable
image

Process

Compilation

The OS copies the executable into
memory, and reserves memory for stack
and heap.

Written in a high-level
language

Sequence of machine
instructions and data

Instance of a program,
ready to be executed by
CPU.

Disk if (x>0)
 y:=1
else
 y:=2

Disk 00011101
11110000
10101000
11110010

instructions data heap stack

Disk

Memory

Disk

From a process to threads

code data files

registers stack

single-threaded process

code data files

registers registers

multi-threaded process

registers

stack stack stack

Scheduling Algorithms

7

FIFO

SJF

RR

Simplicity
Low overhead

Lateness
Turnaround time

Response time
Starvation freedom

8

A Multi-level System

priority

timeslice

I/O bound jobs

CPU bound jobs

Need for synchronization

• For a multithreaded program to be correct,
– some restrictions on accessing shared data by

threads should be satisfied.

• Threads’ access to shared resources should be
coordinated.

• Threads should coordinate on their own their
access to shared data.

• All threads should still be able to make
progress!

9

10

Share Counting with lock

● Thread A

while (machine_A_has_bills)

 acquire (lock)

 r1 = bills_counter

 r1 = r1 +1

 bills_counter = r1

 release (lock)

● Thread B

while (machine_B_has_bills)

 acquire (lock)

 r2 = bills_counter

 r2 = r2 +1

 bills_counter = r2

 release (lock)

Critical
Section

bills_counter = 0
lock = released

11

Producer-Consumer Problem
Shared data: buffer, “In”, “Out”

Shared Semaphores: mutex, empty, full;

 mutex = 1; /* for mutual exclusion*/

 empty = N; /* number empty buf entries */

 full = 0; /* number full buf entries */

Producer

do {

 P(empty);

 P(mutex);

 //produce item

 //update “In”

 V(mutex);

 V(full);

} while (true);

Consumer

do {

 P(full);

 P(mutex);

 //consume item

 //update “Out”

 V(mutex);

 V(empty);

} while (true);

12

Readers-Writers Problem
mutex = Semaphore(1)

wrt = Semaphore(1)

readcount = 0;

Writer

do{

 P(wrt);

 /*writing is performed*/

 V(wrt);

}while(true)

Reader

do{

 P(mutex);

 readcount++;

 if (reardcount == 1)

 P(wrt);

 V(mutex);

 /*reading is performed*/

 P(mutex);

 readcount--;

 if (readcount == 0)

 V(wrt);

 V(mutex);

}while(true)

Monitor

• A data abstraction mechanism,
which consists of:
– state and
– procedures.

• The state is modeled by shared
variables.

• The procedures are the only
means by which the state is
manipulated.

• Mutual exclusion: only one
thread can execute a monitor
procedure at any time.

Monitor monitor_name

{

 // shared variable declarations

 procedure P1(. . .) { . . . }

 . . .

 procedure PN(. . .) { . . . }

 initialization_code(. . .) { . . . }

}

14

A Simple Monitor
Monitor EventTracker {

 int numburgers = 0;

 condition hungrycustomer;

 void customerenter() {

 while (numburgers == 0)

 hungrycustomer.wait()

 numburgers -= 1

 }

 void produceburger() {

 ++numburgers;

 hungrycustomer.signal();

 }

}

Synchronization: abstraction layers

15

TestAndSet, disable interrupts

Spinlocks, queuing locks

Locks (acquire, release),
semaphores (Init,P, V),

condition variables (wait, signal)

Synchronization primitives

• All can encode any predicate on shared data.

• Each primitive can be used to implement
another primitive.

Locks
(acquire, release)

Semaphores
(init, P, V)

Condition Variables
(wait, signal)

Decreasing programming effort to
encode predicates

17

Deadlock

semaphore: mutex1 = 1 /* protects file */

 mutex2 = 1 /* protects printer */

Process A code:
 {
 /* initial compute */

 P(mutex1)
 P(mutex2)

 /* use file & printer*/

 V(mutex2)
 V(mutex1)
}

Process B code:
 {
 /* initial compute */

 P(mutex2)
 P(mutex1)

 /* use file & printer */

 V(mutex1)
 V(mutex2)
}

18

Four Conditions for Deadlock

● Mutual Exclusion

● Hold and wait

● No preemption

● Circular wait

Banker’s Algorithm

For a request R of additional resources issued by process P,
which is the next process scheduled to run:

1. If R does not exceed P’s maximum claim, go to 2.
Otherwise, error.

2. If R does not exceed the available resources, go to 3.
Otherwise, P should wait.

3. Pretend that R is granted to P.

 Update the state of the system.

 If the state is safe, then give requested resources to P.

 Otherwise, P should wait and the old state is restored.

Memory: allocation strategy

• Should processes have contiguous space of
physical addresses in memory?

• Is memory partitioned into fixed- or variable-
sized segments?

– If variable-sized segments, which allocation
algorithm is used?

• First fit: allocate first hole that is big enough.

• Best fit: allocate the smallest hole that is big enough.

• Worst fit: allocate the largest hole.

Address translation

• The CPU understands virtual addresses.

• The memory unit understands physical
addresses.

• The OS and specialized hardware are
responsible for translating virtual addressed
into physical addresses.

• The translation mechanism gives protection.

21

Paging

• Divide physical memory into frames:

– Fixed-sized blocks.

– Size is power of 2, between 512 bytes and 8,192 bytes.

• Divide virtual memory into pages.

– Same size as frames.

• Page table translates virtual to physical addresses.

22

23

Address Translation Scheme

24

Hierarchical Paging

Page Replacement Algorithms

• FIFO: the page brought it earliest is evicted

• OPT: evict page that will not be used for
longest period of time

• LRU: evict page that has not been used the
longest

• MRU: evict the most recently used page

• LFU: evict least frequently used page

Coming up…

• Next lecture: File System Interface

• Exam2: tomorrow last 30mis

