CS 4410
Operating Systems

Review 1

Summer 2016

Cornell University

A modern computer system

2t

Graphics
adapter

HW-OS interface

device
controller

device
driver

OS-App interface

-

device
controller

device
driver

From program code to a process

N "
Program _ _ _
Written in a high-level :
language :
A

Compilation

S EEUeldc Sequence of machine 00011101

g . . 11110000
image instructions and data 10101000

11110010

The OS copies the executable into

memory, and reserves memory for stack
and heap.

Memory

Instance of a program,

ready to be executed by
CPU.

Process

instructions | data | heap| stack

From a process to threads

single-threaded process multi-threaded process

Schedulmg Algorithms

-] éSlmplluty
' - . :Low overhead

1 N .~ iLateness
. . iTurnaround time

- - 1] -| éResponse time
- . iStarvation freedom

A Multi-level System

I/0O bound jobs

priority
CPU bound jobs

timeslice

Need for synchronization

For a multithreaded program to be correct,

— some restrictions on accessing shared data by
threads should be satisfied.

Threads’ access to shared resources should be
coordinated.

Threads should coordinate on their own their
access to shared data.

All threads should still be able to make
progress!

P}

Share Counting with lock

bills_counter =0
lock = released

n —

. Thread A . Thread B

while (machine_A_has_bhills) while (machine_B_has_bills)
acquire (lock) acquire (lock)
rl = bills_counter r2 = bills_counter
ri=rl+1 Critical r2=r2+1
bills_counter = r1 section | hijlls_counter = r2

release (lock) release (lock)

10

Producer-Consumer Problem

Sh(lr‘ed da"'a: buffer', “In", uou_r,,
Shared Semaphores: mutex, empty, full;

mutex = 1; /* for mutual exclusion*/
empty = N; /* number empty buf entries */
full =0O; /* number full buf entries */

Producer Consumer
do { do {

P(empty); P(full);

P(mutex); P(mutex);
//produce item //consume item
//update "In" //update "Out"

V(mutex); V(mutex);

V(full); V(empty):

} while (true); } while (true);

11

Readers-Writers Problem

mutex = Semaphore(1) Reader

wrt = Semaphore(1) dof

readcount = O; P(mutex);
readcount++;

if (reardcount == 1)

Writer P(wrt);
dof V(mutex);
P(wrt); /*reading is performed*/
/*writing is performed*/ P(mutex).
V(wrt); readcount--;
Ywhile(true) if (readcount == 0)
V(wrt);
V(mutex);

twhile(true) 5

Monitor

A data abstraction mechanism,
which consists of:

— state and Monitor monitor_name

— procedures. {

The state iS mOdeIed by Shared // shared variable declarations
Variables' procedure P1(..) { ...}
The procedures are the only

means by which the state is procedure PN(..){ ...
ma nipu Iated . initialization_code(...){ ...}

Mutual exclusion: only one

thread can execute a monitor
procedure at any time.

A Simple Monitor

Monitor EventTracker {
int numburgers = O;
condition hungrycustomer:;

void customerenter() {
while (numburgers == 0)
hungrycustomer.wait()
numburgers -= 1

}

void produceburger() {
++numburgers;
hungrycustomer.signal();

}
}

Synchronization: abstraction layers

Locks (acquire, release),
semaphores (Init,P, V),
condition variables (wait, signal)

Spinlocks, queuing locks

TestAndSet, disable interrupts

15

Synchronization primitives

Decreasing programming effort to
encode predicates

Locks Semaphores Condition Variables
(acquire, release) (init, P, V) (wait, signal)

* All can encode any predicate on shared data.

e Each primitive can be used to implement
another primitive.

Deadlock

semaphore: mutexl =
mutex2 =

- -

Process A code:
{

/* initial compute */

P(mutex1)
P(mutex?2)

/* use file & printer*/

V(mutex2)
V(mutex1)

protects file */
/* protects printer */

Process B code:
{

/* initial compute */

P(mutex?2)
P(mutexl)

/* use file & printer */

V(mutex1)
V(mutex?2)

Four Conditions for Deadlock

. Mutual Exclusion

. Hold and wait

. No preemption

. Circular wait

18

Banker’s Algorithm

For a request R of additional resources issued by process P,
which is the next process scheduled to run:

1. If R does not exceed P’s maximum claim, go to 2.
Otherwise, error.

2. If R does not exceed the available resources, go to 3.
Otherwise, P should wait.

3. Pretend that Ris granted to P.
Update the state of the system.
If the state is safe, then give requested resources to P.
Otherwise, P should wait and the old state is restored.

Memory: allocation strategy

* Should processes have contiguous space of
physical addresses in memory?

* |s memory partitioned into fixed- or variable-
sized segments?

— If variable-sized segments, which allocation
algorithm is used?

* First fit: allocate first hole that is big enough.

* Best fit: allocate the smallest hole that is big enough.
* Worst fit: allocate the largest hole.

Address translation

The CPU understands virtual addresses.

The memory unit understands physical
addresses.

The OS and specialized hardware are

responsible for translating virtual addressed
into physical addresses.

The translation mechanism gives protection.

Paging

* Divide physical memory into frames:
— Fixed-sized blocks.
— Size is power of 2, between 512 bytes and 8,192 bytes.

* Divide virtual memory into pages.

— Same size as frames.

* Page table translates virtual to physical addresses.

Address Translation Scheme

Ff
logical physical

address address | fO0O00 ... 0000

P [T mﬁ—»
{

i .- T

f

physical
memory

age table

Hierarchical Paging

/ ‘ 100
34

\ x v
S 100 500
708 T —
- 708
outer page ™ 029
table . \ 200
900
page of 929
page table

page table

Page Replacement Algorithms

FIFO: the page brought it earliest is evicted

OPT: evict page that will not be used for
longest period of time

LRU: evict page that has not been used the
longest

MRU: evict the most recently used page
LFU: evict least frequently used page

Coming up...

* Next lecture: File System Interface
* Exam2: tomorrow last 30mis

