
CS 4410
Operating Systems

Deadlocks

Prevention & Avoidance

Summer 2016

Cornell University

Today

• Deadlock prevention

• Deadlock avoidance

Deadlock Prevention

Negate one of necessary conditions:

• Mutual exclusion:
– Make resources sharable

– Not always possible (printers?)

• Hold and wait
– Do not hold resources when waiting for another

• Request all resources before beginning execution

• Processes do not know what they will need

• Starvation (if waiting on many popular resources)

• Low utilization (Need resource only for a bit)

– Alternative: Release all resources before requesting anything new

• Still has the last two problems

3

4

Deadlock Prevention

● No preemption:

● Make resources preemptable (2 approaches)

– Preempt requesting processes’ resources if all not available

– Preempt resources of waiting processes to satisfy request

● Good when easy to save and restore state of resource

– CPU registers, memory virtualization

● Circular wait: (2 approaches)

● Single lock for entire system? (Problems)

● Impose partial ordering on resources, request them in order

Deadlock Prevention

• Prevention: Breaking circular wait

– Order resources (lock1, lock2, ...)

– Acquire resources in strictly increasing/decreasing
order

– Intuition: Cycle requires an edge from low to high,
and from high to low numbered node, or to same
node.

– Ordering not always easy...

Deadlock Avoidance

• If we have future information:
– Max resource requirement of each process before they

execute.

• Can we guarantee that deadlocks will never occur?

• Avoidance Approach:
– Before granting resource to a process, check if resulting

state is safe.

– If the state is safe ⇒ no deadlock!
• Grant the resource.

– Otherwise, wait.
• Until some other process releases enough resources.

Safe State

• A state is said to be safe, if it has a process sequence
{P1, P2,…, Pn}, such that
– for each Pi, the resources that Pi can still request can be

satisfied by the currently available resources,

 plus the resources held by all Pj, where j < i.

• State is safe because OS can definitely avoid
deadlock

– by blocking any new requests until safe order is executed.

• This avoids circular wait condition.

– Process waits until safe state is guaranteed.

Safe State Example

• Suppose there are 12 tape drives

– 3 drives are available.

• Current state is safe because a safe sequence exists: <p1,p0,p2>

– p1 can complete with current resources

– p0 can complete with current+p1

– p2 can complete with current +p1+p0

Max need Current usage Could ask for

p0 10 5 5

p1 4 2 2

p2 9 2 7

Safe State

To decide when a state is safe:
• Construct the resource allocation graph for that

state.
• Apply the graph reduction algorithm.
• If the reduced graph is empty:

– the state is safe,
– the order with which processes were eliminated

during the execution of the algorithm gives the safe
sequence of processes.

• If the reduces graph is not empty:
– The state is unsafe.

Banker’s Algorithm

• Decides whether a resource request can be
safely granted.

• Assumption: each process declares the
maximum number of instances of each
resource type that it may need.

– This number may not exceed the total number of
resources in the system.

Banker’s Algorithm

For a request R of additional resources issued by process P,
which is the next process scheduled to run:

1. If R does not exceed P’s maximum claim, go to 2.
Otherwise, error.

2. If R does not exceed the available resources, go to 3.
Otherwise, P should wait.

3. Pretend that R is granted to P.

 Update the state of the system.

 If the state is safe, then give requested resources to P.

 Otherwise, P should wait and the old state is restored.

12

Banker's Algorithm

Data structures:

n number of processes

m number of resource-types

available[1..m] available[i] is # of avail resources of type i

max[1..n,1..m] max demand of each Pi for each Ri

allocation[1..n,1..m] current allocation of resource Rj to Pi

need[1..n,1..m] max number of resource Rj instances that Pi may still request

 (need = max - allocation)

13

Banker's Algorithm : safety algorithm

free[1..m] = available /* how many resources are available */

finish[1..n] = false (for all i) /* none finished yet */

Step 1:

Find an i such that finish[i]=false and need[i] <= free

If no such i exists, go to step 3 /*we’re done */

Step 2: Found an i:

 finish [i] = true /* done with this process */

 free = free + allocation [i] /* assume this process were to finish, */

 /*and its allocation back to the available list */

 go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else the system is unsafe.

Banker's Algorithm:
resource-request algorithm

1. If request[i] > need[i] then error (asked for too much)

2. If request[i] > available[i] then wait (can’t supply it now)

3. Resources are available to satisfy the request
Let’s assume that we satisfy the request. Then we would have:

• available = available - request[i]

• allocation[i] = allocation [i] + request[i]

• need[i] = need [i] - request [i]

 Now, check if this would leave us in a safe state:

 If yes, grant the request,

 If no, then leave the state as is and cause process to wait.

14

15

Banker’s Algorithm: Example

 Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

● This is a safe state: safe sequence <P1, P3, P4, P2, P0>

● Suppose that P1 requests (1,0,2)

● Add it to P1’s Allocation and subtract it from Available.

16

Banker’s Algorithm: Example

 Allocation Max Available
 A B C A B C A B C
P0 0 1 0 7 5 3 2 3 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

● This is still safe: safe seq <P1, P3, P4, P0, P2>

● In this new state, P4 requests (3,3,0)

● Not enough available resources.

● P0 requests (0,2,0)

● Let’s check resulting state...

17

Banker’s Algorithm: Example

 Allocation Max Available
 A B C A B C A B C
P0 0 3 0 7 5 3 2 1 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

● This is unsafe state (why?).

● So P0’s request will be denied.

Today

• Deadlock prevention

• Deadlock avoidance

Coming up…

• Next lecture: memory management

• HW: Short concise answers!

