CS 4410
Operating Systems

Deadlocks
Characterization & Detection

Summer 2016

Cornell University

Today

* Deadlocks
* Detection algorithm

Racing for resources

 Threads are racing to acquire resources.
— Threads may belong to different processes.
— Resources may be logical (user data, OS structures) or
physical (memory, printer, disk).

e Assume there is a mechanism that coordinates
the access of threads to resources.

* This mechanism may be a combination of:
— Synchronization primitives.

— The operating system.
— Resources themselves.

Safety property

Coordinating threads involves blocking threads until
resources are available.

This coordination mechanism should satisfy the safety
property: deadlock freedom!

— At any point of time, at least one thread should be able to
make progress.

Undesirable scenario:

— Process A acquires resource 1, and is waiting for resource 2

— Process B acquires resource 2, and is waiting for resource 1
— Deadlock!

Deadlock

Example 1: Semaphores

semaphore: mutexl
mutex2

nn
- -

Process A code:
{

/* initial compute */

P(mutexl1)
P(mutex?2)

/* use file & printer*/

V(mutex2)
V(mutexl)

/* protects file */
/* protects printer */

Process B code:
{

/* initial compute */

P(mutex?2)
P(mutex1)

/* use file & printer */

V(mutexl)
V(mutex?2)

Example 2: Dining Philosophers

class Philosopher:
chopsticks[N] = [Semaphore(1),..]

\ O/ Def __init__(mynum)

self.id = mynum

O O Def eat():

_— right = (self.id+1) % N

\ left = (self.id-1+N) % N
O while True:
/ O P(left)
P(right)
eat
V(right)

V(left)

Deadlock

* A cycle of waiting among a set of threads
where each thread is waiting for some other
thread in the cycle to take some action.

e Caused by the coordination mechanism.

Four Conditions for Deadlock

Mutual Exclusion

At least one resource must be held in non-sharable mode.
Hold and wait

There exists a process holding a resource, and waiting for another.
No preemption

Resources cannot be preempted.

Circular wait

There exists a set of processes {P1, P2, ... PN}, such that

- P1is waiting for P2, P2 for P3, and PN for P1.

If some of these conditions do not hold, then there is no deadlock(necessary
conditions).

If all four conditions hold, then there may not be a deadlock (not sufficient
conditions).

Deadlock Detection

e Stop the world.
 Check if the conditions for which threads are
waiting can be ever satisfied.

— Check if requested resources can ever be allocated
to threads.

Resource Allocation Graph (RAG)

e 2 kinds of nodes
* A process P, represented as: e

* Aresource R, represented as:

— A resource often has multiple identical
units, such as “blocks of memory”.

— Represent these as circles in the box.
* Edge from P, to Rq:

— P5; wants k units from Rq.
* Edge from R; to P;:

— P¢ has m units from R..

RAG: Example

Can all requests be satisfied?

Deadlock detection with RAG

Start satisfying the requests of each process,
until:

* no process is left - no deadlock, or

* no remaining request can be satisfied -
deadlock.

RAG reduction

* Find satisfiable process P:

— available amount of resource > amount requested.

* Erase P.

— Intuition: Grant the request, let it run, eventually
it will release the resource.

* Repeat until all processes gone or irreducible.

Is this graph reducible?

Yes! The system is not deadlocked.

Is this graph reducible?

No! The system is deadlocked.

Detection Algorithm

Data structures:
n.

m:

available[1..m]
request[l..n,1..m]
allocation[1..n,1..m]
free[l.m]

finish[1..n]

number of processes
number of resource types
available[j] is nhumber of available resources of type j
current demand of each Pi for each Rj
current allocation of resource Rj to Pi
free[j] is number of free resources of type j
(not used by any process)
true if Pi’s request can be satisfied

17

N

N o Ok

Detection Algorithm

free[] = available[]
for all processes i: finish[i] = allocation[i]==[0,0,...,0])
find a process i such that finish[i]=false and

request[i] <= free
if no such i exists, goto 7

free = free + allocation[i]
finish[i]=true
goto 3

system is deadlocked iff finish[i]=false for some
process i

Detection Algorithm: Example

Allocation Request Available
R1 R2 R3 R1 R2 R3 R1 R2 R3

PO 0O 1 O O 0 O O 0 O
P1 2 0 0 2 0 2
P2 3 0 3 O 0 O
P3 2 1 1 1 0 O
P4 0O 0 2 0O 0 2

The system is not in a deadlocked state.

What will happen if P2 makes an additional request for one instance of type R3?

19

Dealing with Deadlocks

Reactive Approaches:

s Periodically check for evidence of deadlock

¢+ For example, using a graph reduction algorithm

= Then need a way to recover
¢ Could blue screen and reboot the computer

¢+ Could pick a “victim” and terminate that thread
m But thisis only possible in certain kinds of applications

m Basically, thread needs a way to clean up if it gets terminated and has to exit in
a hurry!

¢+ Often thread would then “retry” from scratch

(despite drawbacks, database systems do this)

Dealing with Deadlocks

Proactive Approaches:

— Deadlock Prevention and Avoidance
* Prevent one of the 4 necessary conditions from arising
e ... This will prevent deadlock from occurring

Today

* Deadlocks
* Detection algorithm

Coming up...

* Next lecture: prevention and avoidance of
deadlocks

e HW2: due tonight
* In-class exam: tomorrow, last 30mins

