
CS 4410
Operating Systems

Deadlocks

Characterization & Detection

Summer 2016

Cornell University

Today

• Deadlocks

• Detection algorithm

Racing for resources

• Threads are racing to acquire resources.
– Threads may belong to different processes.

– Resources may be logical (user data, OS structures) or
physical (memory, printer, disk).

• Assume there is a mechanism that coordinates
the access of threads to resources.

• This mechanism may be a combination of:
– Synchronization primitives.

– The operating system.

– Resources themselves.

Safety property

• Coordinating threads involves blocking threads until
resources are available.

• This coordination mechanism should satisfy the safety
property: deadlock freedom!
– At any point of time, at least one thread should be able to

make progress.

• Undesirable scenario:
– Process A acquires resource 1, and is waiting for resource 2

– Process B acquires resource 2, and is waiting for resource 1

– Deadlock!

Deadlock

6

Example 1: Semaphores

semaphore: mutex1 = 1 /* protects file */

 mutex2 = 1 /* protects printer */

Process A code:
 {
 /* initial compute */

 P(mutex1)
 P(mutex2)

 /* use file & printer*/

 V(mutex2)
 V(mutex1)
}

Process B code:
 {
 /* initial compute */

 P(mutex2)
 P(mutex1)

 /* use file & printer */

 V(mutex1)
 V(mutex2)
}

7

Example 2: Dining Philosophers

class Philosopher:
 chopsticks[N] = [Semaphore(1),…]

 Def __init__(mynum)
 self.id = mynum

 Def eat():
 right = (self.id+1) % N
 left = (self.id-1+N) % N
 while True:
 P(left)
 P(right)

 # eat
 V(right)
 V(left)

Deadlock

• A cycle of waiting among a set of threads
where each thread is waiting for some other
thread in the cycle to take some action.

• Caused by the coordination mechanism.

9

Four Conditions for Deadlock
● Mutual Exclusion

● At least one resource must be held in non-sharable mode.

● Hold and wait

● There exists a process holding a resource, and waiting for another.

● No preemption

● Resources cannot be preempted.

● Circular wait

● There exists a set of processes {P1, P2, … PN}, such that

– P1 is waiting for P2, P2 for P3, …. and PN for P1.

● If some of these conditions do not hold, then there is no deadlock(necessary
conditions).

● If all four conditions hold, then there may not be a deadlock (not sufficient
conditions).

Deadlock Detection

• Stop the world.

• Check if the conditions for which threads are
waiting can be ever satisfied.

– Check if requested resources can ever be allocated
to threads.

Resource Allocation Graph (RAG)

• 2 kinds of nodes

• A process P3 represented as:

• A resource R7 represented as:
– A resource often has multiple identical

units, such as “blocks of memory”.
– Represent these as circles in the box.

• Edge from P3 to R8:
– P3 wants k units from R8.

• Edge from R5 to P6:
– P6 has m units from R5.

3

7

8

3

k

6
5

m

RAG: Example

1

1

4

2

2

2

3

1

4

1

1

5

Can all requests be satisfied?

Deadlock detection with RAG

Start satisfying the requests of each process,
until:

• no process is left → no deadlock, or

• no remaining request can be satisfied →
deadlock.

RAG reduction

• Find satisfiable process P:

– available amount of resource ≥ amount requested.

• Erase P.

– Intuition: Grant the request, let it run, eventually
it will release the resource.

• Repeat until all processes gone or irreducible.

Is this graph reducible?

1

1

4

2

2

2

3

1

4

1

1

1

Yes! The system is not deadlocked.

Is this graph reducible?

1

1

4

2

2

2

3

1

4

1

1

5

No! The system is deadlocked.

17

Detection Algorithm

Data structures:

n: number of processes

m: number of resource types

available[1..m] available[j] is number of available resources of type j

request[1..n,1..m] current demand of each Pi for each Rj

allocation[1..n,1..m] current allocation of resource Rj to Pi

free[1..m] free[j] is number of free resources of type j

 (not used by any process)

finish[1..n] true if Pi’s request can be satisfied

Detection Algorithm

18

1. free[] = available[]

2. for all processes i: finish[i] = allocation[i]==[0,0,…,0])

3. find a process i such that finish[i]=false and
request[i] <= free

if no such i exists, goto 7

4. free = free + allocation[i]

5. finish[i]=true

6. goto 3

7. system is deadlocked iff finish[i]=false for some
process i

19

Detection Algorithm: Example

 Allocation Request Available
 R1 R2 R3 R1 R2 R3 R1 R2 R3
P0 0 1 0 0 0 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

● The system is not in a deadlocked state.

● What will happen if P2 makes an additional request for one instance of type R3?

Dealing with Deadlocks

Reactive Approaches:

 Periodically check for evidence of deadlock

 For example, using a graph reduction algorithm

 Then need a way to recover

 Could blue screen and reboot the computer

 Could pick a “victim” and terminate that thread

 But this is only possible in certain kinds of applications

 Basically, thread needs a way to clean up if it gets terminated and has to exit in

a hurry!

 Often thread would then “retry” from scratch

 (despite drawbacks, database systems do this)

Dealing with Deadlocks

Proactive Approaches:
– Deadlock Prevention and Avoidance

• Prevent one of the 4 necessary conditions from arising

• …. This will prevent deadlock from occurring

Today

• Deadlocks

• Detection algorithm

Coming up…

• Next lecture: prevention and avoidance of
deadlocks

• HW2: due tonight

• In-class exam: tomorrow, last 30mins

