CS 4410
Operating Systems

Synchronization
Classic Problems

Summer 2016

Cornell University



Today

. Producer-Consumer Problem

. Bounded-Buffer Problem



Restrictions on accessing shared data

* For a multithreaded process to be correct,
some restrictions should be applied to when
thread access shared data.

* Semaphores can model these restrictions.

 We see how semaphores can model different
kinds of restrictions in two different problems.



Producer-Consumer Problem

. One bounded buffer with N entries.

. Multiple producer-threads: fill buffer’s entries.

Pointer In shows the next entry to be filled.

Each producer fills the entry pointed by In, advances In to point to
the next entry.

. Multiple consumer-threads: empty buffer’s entries.

Pointer Out shows the next entry to be emptied.

Each consumer empties the entry pointed by Out, advances out to
point to the next entry.

In Out




Producer-Consumer Problem

Shared data between all threads: buffer.

Shared data between producers: In.

Shared data between consumers: Out.

Requirements on shared data:

. Only one thread should modify the buffer at
any time.

. No production when all N entries are full .

. No consumption when no entry is full.



Selecting semaphores for satisfying
restrictions

* Requirements on * Semaphores on
shared data: shared data:
1. Only one thread
should modify the 1. Mutex
buffer at any time. 2. Counter
2. No production semaphore
when all N entries initialized at N.
are full .
: 3. Counter
3. No consumption
semaphore

when no entry is
full. initialized at 0.



Producer-Consumer Problem

ShGr‘ed da"'a: buffer', “In", \\Ou_l_,,
Shared Semaphores: mutex, empty, full;

mutex = 1; /* for mutual exclusion*/
empty = N; /* number empty buf entries */
full =0O; /* number full buf entries */

Producer Consumer
do { do {
//produce item //consume item
//update "In" //update "Out"

} while (true); } while (true);



Producer-Consumer Problem

Sh(lr‘ed da'ra: buffer', “In", “OUT"
Shared Semaphores: mutex, empty, full;

mutex = 1; /* for mutual exclusion*/
empty = N; /* number empty buf entries */
full =0O; /* number full buf entries */

Producer Consumer
do { do {

P(empty); P(full);
//produce item //consume item
//update "In" //update "Out"

V(full); V(empty):

} while (true); } while (true);



Producer-Consumer Problem

Sh(lr‘ed da"'a: buffer', “In", uou_r,,
Shared Semaphores: mutex, empty, full;

mutex = 1; /* for mutual exclusion*/
empty = N; /* number empty buf entries */
full =0O; /* number full buf entries */

Producer Consumer
do { do {

P(empty); P(full);

P(mutex); P(mutex);
//produce item //consume item
//update "In" //update "Out"

V(mutex); V(mutex);

V(full); V(empty):

} while (true); } while (true);



Readers-Writers Problem

. One file.
. Many reader-threads: read data from the file.

. Many writer-threads: write data to the file.

10



Readers-Writers Problem

. Shared data between all threads: file.

. Requirement:

. At any point of time, the file may be accessed

only by one writer or by muI:cipIe readers.
@

Need some additional
state to count the

active readers.

11



Readers-Writers Problem

. Shared data between all threads: file.

. Shared data between readers: readcount.
. Requirements:

. At any time, the file may be accessed only by one
writer or by multiple readers.

. At any time, readcount may be accessed by one
reader.



Selecting semaphores for satisfying

restrictions
* Requirements on * Semaphores on
shared data: shared data:
1. Atany time, the file 1. Mutex
may be accessgd > Mutex
only by one writer
or by multiple
readers.
2. Atanytime,

readcount may be
accessed by one
reader.

13



Readers-Writers Problem

mutex = Semaphore(1)
wrt = Semaphore(1)

readcount = O;

Whriter
do{

/*writing is performed*/

lwhile(true)

Reader
dof

/*reading is performed*/

Iwhile(true)

14



Readers-Writers Problem

mutex = Semaphore(1)
wrt = Semaphore(1)

readcount = O;

Writer

do{
P(wrt);
/*writing is performed*/
V(wrt);

lwhile(true)

Reader
do{

P(wrt);

/*reading is performed*/

V(wrt);

lwhile(true)

15



Readers-Writers Problem

mutex = Semaphore(1) Reader

wrt = Semaphore(1) dof

readcount = O; P(mutex);
readcount++;

if (reardcount == 1)

Writer P(wrt);
dof V(mutex);
P(wrt); /*reading is performed*/
/*writing is performed*/ P(mutex).
V(wrt); readcount--;
Ywhile(true) if (readcount == 0)
V(wrt);
V(mutex);

twhile(true) iy



Today

. Producer-Consumer Problem

. Bounded-Buffer Problem



Coming up...

. Next lecture: monitors

. HW2: all exercises except for repair.py can be
solved



