
CS 4410
Operating Systems

Synchronization
Classic Problems

Summer 2016

Cornell University

2

Today

● Producer-Consumer Problem

● Bounded-Buffer Problem

Restrictions on accessing shared data

• For a multithreaded process to be correct,
some restrictions should be applied to when
thread access shared data.

• Semaphores can model these restrictions.

• We see how semaphores can model different
kinds of restrictions in two different problems.

3

4

Producer-Consumer Problem
● One bounded buffer with N entries.

● Multiple producer-threads: fill buffer’s entries.

● Pointer In shows the next entry to be filled.

● Each producer fills the entry pointed by In, advances In to point to
the next entry.

● Multiple consumer-threads: empty buffer’s entries.

● Pointer Out shows the next entry to be emptied.

● Each consumer empties the entry pointed by Out, advances out to
point to the next entry.

0 1

In Out

N-1

5

Producer-Consumer Problem

● Shared data between all threads: buffer.

● Shared data between producers: In.

● Shared data between consumers: Out.

● Requirements on shared data:

● Only one thread should modify the buffer at
any time.

● No production when all N entries are full .

● No consumption when no entry is full.

Selecting semaphores for satisfying
restrictions

• Requirements on
shared data:
1. Only one thread

should modify the
buffer at any time.

2. No production
when all N entries
are full .

3. No consumption
when no entry is
full.

6

• Semaphores on
shared data:

1. Mutex

2. Counter
semaphore
initialized at N.

3. Counter
semaphore
initialized at 0.

7

Producer-Consumer Problem
Shared data: buffer, “In”, “Out”

Shared Semaphores: mutex, empty, full;

 mutex = 1; /* for mutual exclusion*/

 empty = N; /* number empty buf entries */

 full = 0; /* number full buf entries */

Producer

do {

 //produce item

 //update “In”

} while (true);

Consumer

do {

 //consume item

 //update “Out”

} while (true);

8

Producer-Consumer Problem
Shared data: buffer, “In”, “Out”

Shared Semaphores: mutex, empty, full;

 mutex = 1; /* for mutual exclusion*/

 empty = N; /* number empty buf entries */

 full = 0; /* number full buf entries */

Producer

do {

 P(empty);

 //produce item

 //update “In”

 V(full);

} while (true);

Consumer

do {

 P(full);

 //consume item

 //update “Out”

 V(empty);

} while (true);

9

Producer-Consumer Problem
Shared data: buffer, “In”, “Out”

Shared Semaphores: mutex, empty, full;

 mutex = 1; /* for mutual exclusion*/

 empty = N; /* number empty buf entries */

 full = 0; /* number full buf entries */

Producer

do {

 P(empty);

 P(mutex);

 //produce item

 //update “In”

 V(mutex);

 V(full);

} while (true);

Consumer

do {

 P(full);

 P(mutex);

 //consume item

 //update “Out”

 V(mutex);

 V(empty);

} while (true);

10

Readers-Writers Problem

● One file.

● Many reader-threads: read data from the file.

● Many writer-threads: write data to the file.

11

Readers-Writers Problem

● Shared data between all threads: file.

● Requirement:

● At any point of time, the file may be accessed
only by one writer or by multiple readers.

Need some additional
state to count the

active readers.

12

Readers-Writers Problem

● Shared data between all threads: file.

● Shared data between readers: readcount.

● Requirements:

● At any time, the file may be accessed only by one
writer or by multiple readers.

● At any time, readcount may be accessed by one
reader.

13

Selecting semaphores for satisfying
restrictions

• Requirements on
shared data:

1. At any time, the file
may be accessed
only by one writer
or by multiple
readers.

2. At any time,
readcount may be
accessed by one
reader.

• Semaphores on
shared data:

1. Mutex

2. Mutex

14

Readers-Writers Problem
mutex = Semaphore(1)

wrt = Semaphore(1)

readcount = 0;

Writer

do{

 /*writing is performed*/

}while(true)

Reader

do{

 /*reading is performed*/

}while(true)

15

Readers-Writers Problem
mutex = Semaphore(1)

wrt = Semaphore(1)

readcount = 0;

Writer

do{

 P(wrt);

 /*writing is performed*/

 V(wrt);

}while(true)

Reader

do{

 P(wrt);

 /*reading is performed*/

 V(wrt);

}while(true)

16

Readers-Writers Problem
mutex = Semaphore(1)

wrt = Semaphore(1)

readcount = 0;

Writer

do{

 P(wrt);

 /*writing is performed*/

 V(wrt);

}while(true)

Reader

do{

 P(mutex);

 readcount++;

 if (reardcount == 1)

 P(wrt);

 V(mutex);

 /*reading is performed*/

 P(mutex);

 readcount--;

 if (readcount == 0)

 V(wrt);

 V(mutex);

}while(true)

17

Today

● Producer-Consumer Problem

● Bounded-Buffer Problem

18

Coming up…

● Next lecture: monitors

● HW2: all exercises except for repair.py can be
solved

