
CS 4410
Operating Systems

Synchronization

Locks - Semaphores

Summer 2016

Cornell University

2

Today

● Need for synchronizing threads when they
access shared data.

● Locks

● Semaphores

Racing for shared data

• Threads of the same process are not
completely independent.

• Sometimes, they access shared data.
– Shared data reside in the memory space shared

by the threads.

• For a program to be correct, there might be
some restrictions imposed on when threads are
supposed to access shared data.

• It is hard to reason about when threads access
shared data, due to:
– preemptive scheduling,
– multiprocessors.

• So, it is hard to reason about the satisfaction of
these restrictions and the correctness of the
program.

3

r
e
s
o
u
r
c
e

Thread A Thread B

4

Example: Share Counting

● Mr Skroutz wants to count his $1-bills.

● Initially, he uses one thread that increases a variable
bills_counter for every $1-bill.

● Then he thought to accelerate the counting by using
two threads and keeping the variable bills_counter
shared.

5

Share Counting

● Thread A

while (machine_A_has_bills)

bills_counter++

● Thread B

while (machine_B_has_bills)

bills_counter++

bills_counter = 0

print bills_counter

● Restriction: bills_counter should be updated by only one
thread each time.
● Is this restriction satisfied?

6

Share Counting: A closer look

● Thread A

 r1 = bills_counter

 r1 = r1 +1

 bills_counter = r1

● Thread B

 r2 = bills_counter

 r2 = r2 +1

 bills_counter = r2

7

Possible executions

● Thread A

 r1 = bills_counter

 r1 = r1 +1

 bills_counter = r1

● Thread B

 r2 = bills_counter

 r2 = r2 +1

 bills_counter = r2

● If bills_counter = 42, what are its possible values after the
execution of one A/B loop ?

8

Possible executions

● Thread A

 r1 = bills_counter

 r1 = r1 +1

 bills_counter = r1

● Thread B

r2 = bills_counter

r2 = r2 +1

bills_counter = r2

● If bills_counter = 42, what are its possible values after the
execution of one A/B loop ?

9

Share Counting: A closer look

● Thread A

 r1 = bills_counter

 r1 = r1 +1

 bills_counter = r1

● Thread B

 r2 = bills_counter

 r2 = r2 +1

 bills_counter = r2

● The restriction is not satisfied.
● The behavior of the program is unexpected. The program
is not correct.

Need for synchronization

• For a multithreaded program to be correct,
– some restrictions on accessing shared data by threads should be

satisfied.

• Threads’ access to shared resources should be coordinated.
• Assume resources themselves are not clever enough to

know the restrictions (VS network card).
• Assume there is no entity that has global view of threads’

execution and knows the restrictions (VS operating system).
• So, threads should coordinate on their own their access to

shared data.
• All threads should still be able to make progress!

10

11

Critical Section

● Thread A

while (machine_A_has_bills)

 r1 = bills_counter

 r1 = r1 +1

 bills_counter = r1

● Thread B

while (machine_B_has_bills)

 r2 = bills_counter

 r2 = r2 +1

 bills_counter = r2

● Restriction rephrased: commands in critical section should be
executed one after the other without interruption.

Critical
Section

Lock: A synchronization primitive

• A thread must acquire a lock to enter a critical section.
– Only one thread can acquire the lock at a time.
– The thread releases the lock once it exits the critical

section.

• Locks model restrictions on accessing shared data.
• Locks are themselves shared resources among threads.

– But is it just the problem we want to solve?

• Access to locks through acquire and release actions is
atomic.

• Atomic access to locks gives atomic access to critical
sections!

12

13

Share Counting with lock

● Thread A

while (machine_A_has_bills)

 acquire (lock)

 r1 = bills_counter

 r1 = r1 +1

 bills_counter = r1

 release (lock)

● Thread B

while (machine_B_has_bills)

 acquire (lock)

 r2 = bills_counter

 r2 = r2 +1

 bills_counter = r2

 release (lock)

● Restriction rephrased: commands in critical section should be
executed one after the other without interruption.

Critical
Section

bills_counter = 0
lock = released

Achieving atomic access

• TestAndSet harware instruction.
– Test and modify the content of one word atomically.

• Disable interrupts before accessing a target.
– Modify target (the modification procedure should be

short and simple).

– Enable interrupts after access.

14

boolean TestAndSet(boolean *target){

 boolean rv = *target;

 *target = TRUE;

 return rv; }

Implementing a lock: an example

• Lock is a boolean variable.

• acquire(Lock): while (TestAndSet(&Lock)) skip;

• release(Lock) : lock = FALSE;

• Any implementation of acquire and release should
be atomic!

15

atomic

atomic

16

Spinlock VS queuing lock

● This implementation of lock uses spinlock.

● It requires busy waiting.

● Threads waiting to acquire the lock should loop
continuously before the critical section.

● Valuable CPU cycles are wasted.

● Solution: queuing lock!

● Block the waiting thread and add it in a waiting queue.

● Unblock the first thread in the waiting queue and add it in
the ready queue, when the lock is “available”.

Semaphore: synchronization primitive

• Semaphores: integer values

• A lock is abstracted by a semaphore S.

• Init(S,N): S=N
• P(S): while S <= 0 skip; S--;
• V(S): S++

• Can be used for:
– Mutual exclusion (mutex)

– Condition synchronization (counter semaphor)

17

Semantics.
Not real

implementation!

Synchronization: abstraction layers

18

TestAndSet, disable interrupts

Spinlocks, queuing locks

Locks (acquire, release),
semaphores (Init,P, V)

19

Today

● Need for synchronizing threads when they
access shared data.

● Locks

● Semaphores

Coming up…

20

