CS 4410
Operating Systems

Synchronization
Locks - Semaphores

Summer 2016
Cornell University



Today

. Need for synchronizing threads when they
access shared data.

. Locks

. Semaphores



Racing for shared data

Threads of the same process are not
completely independent.
Sometimes, they access shared data.

— Shared data reside in the memory space shared
by the threads.

For a program to be correct, there might be
some restrictions imposed on when threads are
supposed to access shared data.

It is hard to reason about when threads access
shared data, due to:

— preemptive scheduling,

— multiprocessors.
So, it is hard to reason about the satisfaction of

these restrictions and the correctness of the
program.

Thread A

Thread B




Example: Share Counting

. Mr Skroutz wants to count his S1-bills.

. Initially, he uses one thread that increases a variable
bills _counter for every S1-bill.

. Then he thought to accelerate the counting by using
two threads and keeping the variable bills_counter

shared.



Share Counting

bills _counter =0

. Thread A . Thread B
while (machine_A_has_bhills) while (machine_B has_bills)
bills_counter++ bills_counter++

print bills_counter

. Restriction: bills_counter should be updated by only one
thread each time.
. Is this restriction satisfied?



Share Counting: A closer look

hread A . Thread B
rl = bills_counter r2 = bills_counter
rl1 =rl1+1 2 =r2+1

bills_counter =r1 bills_counter =r2



Possible executions

. Thread A . Thread B

rl = bills_counter
r1=rl+1

bills_counter =rl _
- r2 = bills_counter

r2=r2+1

bills_counter =r2

. If bills_counter = 42, what are its possible values after the
execution of one A/B loop ?



Possible executions

. Thread A . Thread B

rl = bills_counter
r2 = bills_counter
2=r2+1
rli=rl+1

bills_counter =rl

bills_counter = r2

. If bills_counter = 42, what are its possible values after the
execution of one A/B loop ?



Share Counting: A closer look

. Thread A . Thread B
rl = bills_counter r2 = bills_counter
rl1 =rl1+1 2 =r2+1
bills_counter =r1 bills_counter =r2

. The restriction is not satisfied.

. The behavior of the program is unexpected. The program
IS not correct.



Need for synchronization

For a multithreaded program to be correct,

— some restrictions on accessing shared data by threads should be
satisfied.

Threads’ access to shared resources should be coordinated.

Assume resources themselves are not clever enough to
know the restrictions (VS network card).

Assume there is no entity that has global view of threads’
execution and knows the restrictions (VS operating system).

So, threads should coordinate on their own their access to
shared data.

All threads should still be able to make progress!



Critical Section

. Thread A . Thread B

while (machine_A _has_bills) while (machine_B_has_bills)
rl = bills_counter r2 = bills_counter
r1=rl+1 e 2=+
bills_counter = r1 bills_counter =r2

. Restriction rephrased: commands in critical section should be
executed one after the other without interruption.

11



Lock: A synchronization primitive

A thread must acquire a lock to enter a critical section.
— Only one thread can acquire the lock at a time.

— The thread releases the lock once it exits the critical
section.

Locks model restrictions on accessing shared data.

Locks are themselves shared resources among threads.
— Butis it just the problem we want to solve?

Access to locks through acquire and release actions is
atomic.

Atomic access to locks gives atomic access to critical
sections!

12



Share Counting with lock

bills_counter =0
lock = released

. Thread A . Thread B

while (machine_A_has_bhills) while (machine_B_has_bills)
acquire (lock) acquire (lock)
rl = bills_counter r2 = bills_counter
ri=rl+1 Critical r2=r2+1
bills_counter = r1 section | hijlls_counter = r2
release (lock) release (lock)

. Restriction rephrased: commands in critical section should be
executed one after the other without interruption.

13



Achieving atomic access

* TestAndSet harware instruction.
— Test and modify the content of one word atomically.

boolean TestAndSet(boolean *target){
boolean rv = *target;
*target = TRUE;
return rv; }

* Disable interrupts before accessing a target.

— Modify target (the modification procedure should be
short and simple).

— Enable interrupts after access.

14



Implementing a lock: an example

Lock is a boolean variable. @

acquire(Lock): while (Tes’rAr'\‘dSeT(&Lock)) skip:;
release(Lock) : /ock‘,-' FALSE;

S

Any implementation of acquire and release should
be atomic!

15



Spinlock VS queuing lock

This implementation of lock uses spinlock.
It requires busy waiting.

Threads waiting to acquire the lock should loop
continuously before the critical section.

Valuable CPU cycles are wasted.

Solution: queuing lock!

Block the waiting thread and add it in a waiting queue.

Unblock the first thread in the waiting queue and add it in
the ready queue, when the lock is “available”.



AAAAAAAAAAAAAA

i 41
Semaphores: integer values ji; ,
A lock is abstracted by a semaphore S. {;1};
Init(S,N): S=N
P(S): while S <= O skip; S--;
V(S)I S++ ° o O Semantics.

Not real
implementation!

Can be used for:
— Mutual exclusion (mutex)
— Condition synchronization (counter semaphor)

ET

a

17



Synchronization: abstraction layers

Locks (acquire, release),
semaphores (Init,P, V)

Spinlocks, queuing locks

TestAndSet, disable interrupts

18



Today

. Need for synchronizing threads when they
access shared data.

. Locks

. Semaphores



Coming up...



