CS 4410 Operating Systems

CPU Scheduling

Summer 2016 Cornell University

Today

- Scheduling algorithms
- Constraints
- Optimization criteria

Scheduling algorithm

- The OS should create the illusion that all threads produce work "at the same time".
- The OS employs a scheduling policy.
- The scheduling policy determines which "ready" thread will use the CPU next.

Constraints

- Some task constraints:
 - arrival time, deadline, priority,
 - CPU bound (i.e. matrix multiply) or I/O bound (i.e. text editor)?
- Some resource constraints:
 - number of resources,
 - can we preempt resources?

Input of a scheduling algorithm for 1 CPU.

- The input usually does not satisfy all constraints.
 - Here, the constraint of 1 CPU is violated, because a vertical line may cut more than 1 tasks.
- The output of a scheduling algorithm should satisfy all constraints.

Many ways to schedule tasks and satisfy constraints

Shortest Job First (SJF)

Round Robin (RR)

Which algorithm is the best?

It depends on the criteria we want to optimize for!

Optimization Criteria

- CPU utilization
- Throughput
- Turnaround time
- Waiting time
- Response time
- Lateness
- Simplicity
- Energy consumption
- Starvation freedom
- Low overhead

Which algorithm is the best for ... ?

Simplicity Low overhead

Lateness Turnaround time

Response time Starvation freedom

RR: Choice of Time Quantum

- Too short quantum:
 - Better responsiveness.
 - Preferred by I/O-bound tasks.
 - Increased overhead (due to context switching).
- Too long quantum:
 - Reduced overhead.
 - Preferred by CPU-bound tasks.
 - Worse responsiveness.
- Usually operating systems pick a quantum between 10 and 100 ms.
- It depends on the criteria we want to optimize for!

Turnaround Time w/ Time Quantum

Multi-level Feedback Queue (MFQ)

- Different quanta are suitable for different types of tasks, in order to achieve:
 - better responsiveness and
 - lower overhead,

on average.

• MSQ "learns" a suitable quantum for each task.

MFQ

A Multi-level System

Multiprocessor Scheduling

- Additional constraints that may be considered:
 - N>1 CPUs
 - Affinity: each task is always scheduled at the same CPU.
 - Groups: all the tasks of a program should be scheduled together.

Today

- Scheduling algorithms
- Constraints
- Optimization criteria

Coming up...

• Next lecture: Synchronization