
1

CS 4410
Operating Systems

Hardware – OS &

OS- Application interface

Summer 2016

Cornell University

2

Today

● HW-OS interface

● OS-App interface

● Protection

3

How can an editor use a keyboard?

memory

CPU

keyboard

editor

OS keyboard
driver

keyboard
controller

4

A modern computer system

Graphics
adapter

CPU Disk controller USB controller

disks
mouse

keyboard

printer
monitor

memory

app

OS device
driver

app app

device
driver

5

HW-OS interface

memory

CPU

device

application

OS device
driver

device
controller

6

HW-OS interface

● Device Controller:

● A set of chips on a plug-in board.

● It has local buffer storage and/or a set of special purpose
registers.

● Responsible for moving data between device and
registers/buffer.

● Responsible for making data available to the device
driver.

7

HW-OS interface

● Device Driver:

● Belongs to the OS.

● Communicates with the device controller.

● Presents a uniform interface to the rest of the OS.

8

Driver to Controller

● Memory-mapped I/O

● Device communication goes over the memory bus

● Reads/Writes to special addresses are converted into I/O operations by dedicated
device hardware

● Each device appears as if it is part of the memory address space

● Programmed I/O

● CPU has dedicated, special instructions

● CPU has additional input/output wires (I/O bus)

● Instruction specifies device and operation

● Memory-mapped I/O is the predominant device interfacing technique in use

device
controller

device
driver

CPU

9

Controller to Driver

● Polling

● CPU constantly checks controller for new data

● Inefficient

● Interrupts

● Controller alert CPU for an event

● Interrupt driven I/O

● Interrupt driven I/O enables the CPU and devices to
perform tasks concurrently, increasing throughput.

device
controller

device
driver

CPU

device OS

Example: Reading data from disk

● Disk’s device driver (in OS) executes a read command (memory-mapped I/O).

● CPU writes the read’s descriptor to the disk’s controller register.

● CPU executes another computation.

● The disk asynchronously performs the read operation.

● When the read operation completes, by putting the requested data in disk controller’s buffer,
the device controller interrupts the CPU (Interrupt driven I/O).

● The CPU stops the current computation.

● The CPU transfers the execution to the disk’s device driver (which was waiting for this read to
complete).

● The disk’s device driver executes by moving the requested data from disk controller’s buffer to
memory.

● On completion, the CPU resumes the interrupted computation.

● BUT, this would incur high-overhead for moving bulk-data. One interrupt per byte!

11

Direct Memory Access (DMA)

●Transfer data directly between device controller and memory.

●No CPU intervention required for moving bytes.

●Device raises interrupts solely when the block transfer is
complete.

●Critical for high-performance devices.

12

OS-App interface

memory

CPU

device

OS device
driver

device
controller

application

OS-App interface

● Driver to Application:

● Pass data from OS memory space to application memory
space.

● Application to Driver:

● System Calls

● Like calling a routine of the OS.

● Examples: print a character, send a packet, read a block
from disk.

Protection

● OS is necessarily trusted to do anything with the
hardware.

● Applications are untrusted; they should not have
complete control of the hardware.

● For example, applications should not be able to:

● access memory own by other application, or

● disable interrupts.

● CPU needs to distinguish whether an instruction is
executed on behalf of the OS or on behalf of an
application.

Dual-mode operation

● Use a privilege mode bit in CPU.

● On user mode, CPU checks whether each instruction is
allowed.

● On kernel mode, CPU applies no check.

Example: changing privilege mode

User
Mode

Kernel
Mode

System call, or
Interrupt, or
Processor exception

Return

Synchronous VS asynchronous
events…

… with respect to the execution of an application.

● Synchronous

● Events triggered by the execution of the application.

● Example: systems call, process exception (i.e. division by 0).

● Asynchronous

● External events; not triggered by the application.

● Example: intervals.

● In both cases, CPU stops executing the application, saves
the execution state, and executes the corresponding
handler in the OS.

18

Today

● HW-OS interface

● OS-App interface

● Protection

19

Coming up…

● Next lecture: Processes and Threads

● HW1:

● HW-OS-App interface

● Due on Monday, 10pm.

● No in-class exam next week.

● CMS invitation?

Game!
Communication between
PDFviewer and hard disk

1) The device controller retrieves desired data and store them in the local
buffer.

2) The driver handles the system call.

3) PDFviewer issues a system call to read data.

4) The driver writes a “read descriptor” to the device controller using memory
mapped I/O.

5) The device controller uses DMA to transfer data to driver’s memory.

6) The device controller causes an interrupt.

7) The system call returns successfully.

8) The device driver copies data to the memory space of PDFviewer.

Solution

3) PDFviewer issues a system call to read data.

2) The driver handles the system call.

4) The driver writes a “read descriptor” to the device controller using
memory mapped I/O.

1) The device controller retrieves desired data and store them in the
local buffer.

5) The device controller uses DMA to transfer data to driver’s memory.

6) The device controller causes an interrupt.

8) The device driver copies data to the memory space of PDFviewer.

7) The system call returns successfully.

