Log-Structured File Systems

Basic Problem

Most file systems now have large memory caches
(buffers) to hold recently-accessed blocks
— Most reads are thus satisfied from the buffer cache

From the point of view of the disk, most traffic is write
traffic
— To speed up disk I/O, we need to make writes go faster

But disk performance is limited ultimately by disk head
movement

With current file systems, adding a block takes several
writes (to the file and to the metadata), requiring
several disk seeks

LFS: Basic ldea

An alternative is to use the disk as a log
A log Is a data structure that is written only at the head

If the disk were managed as a log, there would be
effectively no head seeks

The “file” is always added to sequentially

New data and metadata (inodes, directories) are
accumulated in the buffer cache, then written all at
once in large blocks (e.g., segments of .5M or 1M)

This would greatly increase disk thruput

How does this really work? How do we read? What
does the disk structure look like? etc.? 3

LFS Data Structures

Segments: log containing data blocks and metadata

Inodes: as in Unix, inodes contain physical block
pointers for files

Inode map: a table indicating where each inode is on
the disk

— Inode map blocks are written as part of the segment; a table in a
fixed checkpoint region on disk points to those blocks

segment summary: info on every block in a segment

segment usage table: info on the amount of “live” data
In a block

LFS vs. UFS

t directory

. data

filel file2

dirl dir2
Unix File _
System Inode map
dirl dir2
Blocks written to
create two 1-block
Log . files: dirl/filel and
dir2/file2, in UFS and

LFS

Log-Structured
File System

filel file2

LFS: read and write

Every write causes new blocks to be added to the
current segment buffer in memory; when that segment
Is full, it is written to the disk

Reads are no different than in Unix File System, once
we find the inode for a file (in LFS, using the inode
map, which is cached in memory)

Over time, segments in the log become fragmented as
we replace old blocks of files with new block

Problem: in steady state, we need to have contiguous
free space in which to write

LFS Failure Recovery

» Checkpoint and roll-forward

» Recovery is very fast
— No fsck, no need to check the entire disk

— Recover the last checkpoint, and see how much
data written after the checkpoint you can
recover

— Some data written after a checkpoint may be
lost

— Seconds versus hours

Cleaning

The major problem for a LFS is cleaning, i.e.,
producing contiguous free space on disk

A cleaner process “cleans” old segments, i.e., takes
several non-full segments and compacts them, creating
one full segment, plus free space

The cleaner chooses segments on disk based on:
— utilization: how much is to be gained by cleaning them
— age: how likely is the segment to change soon anyway

Cleaner cleans “cold” segments at 75% utilization and
“hot” segments at 15% utilization (because it’s worth
waiting on “hot” segments for blocks to be rewritten by

current activity) .

LFS Summary

Basic idea is to handle reads through caching and
writes by appending large segments to a log

Greatly increases disk performance on writes, file
creates, deletes,

Reads that are not handled by buffer cache are same
performance as normal file system

Requires cleaning demon to produce clean space, which
takes additional CPU time

