
I shall not mutate my program, I shall use correct default
values, and override them by passing appropriate command line
parameters for testing

An important part of good software engineering practices is not hard-coding "magic numbers" into
the problem which cannot be changed except through recompilation. By allowing these constants to be
specified at startup time, with a configuration file or command-line arguments, the program can be
considerably more flexible in its use patterns, development effort is saved if a parameter needs to be
changed, and the code becomes easier to understand. At the same time, people who are using the
program may not wish to specify their own values for every parameter, so the program should
transparently provide default values which are used instead.

Fortunately, Python makes it fairly easy to implement this. The first thing to do is allow the
program to take in arguments from the command line, so if we originally had a program like this:

Constants
foo = 5
bar = 42

class Processing(Thread):

do stuff

thread = new Processing()
thread.start()

we could allow foo and bar to be specified at the CLI by changing it to

import sys

foo = sys.argv[1] # argv[0] is name of program, actual args start at 1
bar = sys.argv[2]

so further references to foo and bar will use the arguments specified on the command line (in Python,
sys.argv is a list with one element for each command-line argument. Because Python has an operator to
determine the length of the list, it is not necessary to have a separate variable given by the runtime, as in
C).

This solution still doesn't allow for default values, though. There are a number of ways this could be
implemented; which one is best would depend on the exact nature and requirements of the program. For
example, in a program allowing dozens of arguments, simply hardcoding the variables to a given index is
not practical. However, for a program with few, or one, variable to be specified in this way, a very simple
and readable solution that can be implemented with the minimum of additional code would be to just
check the number of arguments passed and assign accordingly, like this:

import sys

foo = sys.argv[1] if len(sys.argv) > 1 else FOO_DEFAULT
bar = sys.argv[2] if len(sys.argv) > 2 else BAR_DEFAULT

which uses Python's ternary operator to find if the user passed in arguments. For larger numbers of
arguments, this approach doesn't scale. An alternative solution might be to have an array filled with
default values, then loop over sys.argv and assign global variables to elements in that array until it runs
out, then continue assigning them from the defaults array.

Another solution, better when "non-programmers" will be using the utility or where there can be large
numbers of arguments of different types, which can be invoked independently of each other, is to use
command-line switches, instead of simply passing the arguments one after the other, resulting in program
invocations looking like "python server.py -t 90" to specify a timeout of 90 seconds. Python provides
the "getopt" library for this purpose, example usage is demonstrated below:

import sys
import getopt

foo = FOO_DEFAULT
bar = BAR_DEFAULT

try:

opts, args = getopt.getopt(sys.argv[1:], "f:b:", ["foo=", "bar="])
for k, v in opts:

if k == "-f" or k == "--foo":
foo = int(v)

else if k == "-b" or k == "--bar":
bar = int(v)

except:
print "Error, unknown flag"

This approach is much easier to scale up to as many variables as needed, does not require that they be
passed in any particular order, and it makes it much easier for users of the program to understand what
the parameters they are passing mean, since each switch can be documented (in the program's man
page, for instance). With all of these methods in place for passing custom parameters values, there is no
excuse for hardcoding them!

