Cryptography

Ken Birman

arly days
* Earliest uses of cryptography were to implement login

e Systems like UNIX maintained a password file
« Anyone could read it... but the passwords were in an
encrypted form
¢ When you logged in, they would compute the
encryption of your password and see if it matched the
file version

o If 50, allowed you to log in...

Hardware
* These days most computers include “trusted platform
modules” or TPMs
e Special hardware

e It has a built-in key (we'll see what kind soon)

o Effectively, the TPM can say “Dell.com vouches for this
machine, it’s name is Ken'sLaptop”

© TPM can do some simple cryptographic operations
o If widely adopted would result in much better security
¢ But in fact not widely used today

he ro_Ie of cryptography in O/S

 Core questions we've encountered:
¢ I claim to be “Ken Birman”. But can I prove this?
¢ The web site claims to be “M&T Bank.com”. But is it?
 You make a purchase from Amazon.com and need to
enter your credit card information. Can spies see it?
¢ You and your friend are exchanging some very sensitive
email. Can it be kept secret from third parties?

* On a single machine, O/S provides protection using
user/group IDs, permissions, and by ensuring that
distinct processes have distinct address spaces

arly days
* But then people realized that brute force tools could
often find passwords
o First reaction was to hide the password file more
carefully
e Leads to a focus on network security, because more and

more the passwords are in a secured machine out on the
network!

he ro_Ie of cryptography in O/S

° We tend to turn to cryptographic techniques in
networked settings where there are multiple machines

e Several questions arise
e First, what “tools” can cryptography give us?

e Then, how can we embed these tools into the network in
convenient, safe, secure ways?

¢ Finally, what sorts of limitations are we left with?

5/7/2009

asic setup

* We'll think in terms of situations where there are two
processes that need to communicate

e Call them Sally and Ted

* Let’s start by exploring ways that Sally and Ted can
share secrets

ymmetric crytography

* Encrypty (m): encrypts message m using key K
* Decrypty (m): decrypts message m using key K
* Signy (m): computes a signature for message m

e This is a short (usually 128 bit) number that is calculated
from m and then encrypted with K

e Uses to detect tampering, or as proof that “Sally saw m”

@ T X =Encrypt (Hi Sallyr) m
e 7
N ([
A= Decrypty (X)

'41 wi "
- Hi Sally!

W

ymrﬁetric cryptography

© There are many popular implementations of this kind
of cryptographic system
e For example, US government recommends something
called DES, the Digital Encryption Standard
e For some purposes DES isn't secure enough, but if you
create three keys and apply DES three times, result is
very robust (“triple DES”)
e For signatures, many systems compute an “MDs5 hash”
and then encrypt it
* Of course, Sally and Ted still have the problem of
creating that initial shared key in a secure way!

1

5/7/2009

| e

Symrﬁetric cryptography

¢ In this approach, Sally starts by creating a secret key
and sharing it (somehow) in a secure way with Ted

* They both have the identical key.

* Then we can define some functions in terms of the key
v e
= il

WL 5
e~

K K

N

On the Internet

* Encrypted messages look like random bits!
e An intruder can’t make any sense out of them at all

¢ A good encryption scheme should have the property
that even if you know what the message really says, you
can't figure out the key without trying every possible key

© Goal: create a problem that is computationally
infeasible today... and will stay that way tomorrow!

| e

Asym-metric cryptography

e Also called “public key” cryptography
* A clever scheme that eliminates need to share the key
initially
e In practice a bit slow, so sometimes we start with
asymmetric keys and then “exchange” them for
symmetric ones
e This would be one way for our symmetric keys to get
shared between Sally and Ted....

I Asym-metric cryptography

* Basicidea:
e Sally picks a public key K and a private key K~
° There is a well known known function crypt s.t.:
e crypty! (crypty (m)) = m
e crypty (erypt* (m)) = m
* She publishes her public key K

sally

* Ted does exactly the same thing, using his own keys

SA implementation?

* Basic idea:
e Sally selects two very big prime numbers p and ¢
© She computes
1. Amodulus n=p*q
2. A totient ¢(n) = (p-1)*(q-1)
3. She picks an integer e such that1< e < ¢(n), s.t. eand
¢(n) are coprime (share no divisor other than 1)

4. She calculates d s.t. d*e == 1 mod ¢(n)

* Sally releases her public key as (e, n). She retains d as
her private key.

I Notes_

* Notice that encrypt and decrypt are really the same
computation but using different keys
e X = M¢ mod n, to encrypt
e M = X4 mod n, to decrypt

* Why does it work?
» encrypt(decrypt(M)) = M®"d mod n
Theorem (Gauss):
Ifd*e ==1mod ¢(n) then (M®"d mod n) = (M' mod n) =M
e ... hence encrypt(decrypt(M)) =M qed

5/7/2009

I Asym-metric cryptography

e Let’s use S for Sally’s public key and S for her private key

e Similarly, T and T for Ted’s key pair
e For Ted to send a secret message m to Sally:
e Ted computes X = crypty (crypts (m))
e Sally computes M = crypt; (cryptg (X))
o Only Ted could have sent this. Only Sally can read it!

>< cryptr(crypts(Hl' l E.
—
\ - !\4 cryptT(crypts (X))

SA implementation?

* Sally publishes her public key (e,n) to Ted
* To compute cryptg (m):
e Bob transforms m into a big integer o < M < n (using a
standard “padding” scheme)
¢ Now he computes X = M¢ mod n

e Xisthe encrypted text (in this case, encrypted with
Sally’s public key)

 To decrypt, Sally needs to compute cryptg (X)
e M=Xdmodn

I Notes_

* Notice also that encrypt and decrypt can be applied in
any order, even with multiple keys
e This is quite useful
e For example, makes it possible to ask a service to “sign”
something that it can’t actually look at, much like a
notary public in a bank
First I encrypt the object with my public key

Then send it to the notary, who encrypts with her private key

Then I decrypt with my private key... and end up with a
“notarized” object (specifically, encrypted with the notary’s
private key, and decryptable with her public key)

Yet she never saw the object she notarized!

sing asymmetric keys
¢ Ted can send a message that only Sally can read
e Just encrypt it with her public key first

¢ Ted can send a message that only he can have sent
e Just encrypt it with his private key first

? =
* Orboth..... @\f L =
), o
=5

© An encrypted hash is often used as a signature

ow to share public keys?

 There is an Internet standard for so-called “certificate
repositories”

e A certificate is a signed record that contains
cryptographic information, like Sally’s public key
e Who signs it? The “certificate authority”

* These are built as hierarchies, like the DNS

W

Pulf;Iic Key Infrastructure (PKI)

* Your O/S has a root key built in
e That root “signs” for top-level
CA such as Verisign
e Amazon.com registers their
certificate with Verisign

* So when you want to talk to
Amazon.com... it tells you to
get its certificate from Verisign

* Microsoft says you can trust
Verisign... and Verisign gives
you the Amazon certificate

5/7/2009

ros and Cons

* With asymmetric keys one party can easily send things
to the other party

¢ We do need a way to publish the public information...
but this turns out to be reasonably easy

* But these keys are slow (bignum arithmetic...)
* So a common trick is for Ted to send Sally a proposed
symmetric (shared and private) key

¢ Once Sally accepts it, she and Ted switch to using that
key, with symmetric cryptography, which is very fast

rusted Platform Module

* This is one answer to the question... Remember the
TPM?
* What it contains is a private key (burned into hardware)
e Public key can be obtained from Dell.com

* This lets us imagine software that “can only be
executed on Ken’s Laptop” or “an image that Sophie’s
Pentax Optio D-60 took in New Orleans at this GPS
coordinate on Thursday May 11, 2003..”

¢ But as mentioned, not widely used

hat’s in a certificate?

* Name of the entity the key is for

* Type of key (RSA in our examples)

¢ Expiration time

e Signature of the CA vouching for the certificate

e

Windows Certificate Manager

Py e

egotiation Step

* The two end points agree on the cryptographic
protocol suite they will use
e For example, RSA, Diffie-Hellman, etc

e Idea is to be flexible enough so that a bank, or the
military, could use a scheme of its own

Symmetric encryption/authentication

* Once the keys are in place, each message sent on the
secured TCP connection is
¢ Encrypted, to keep the bytes secret
e Authenticated, to prevent injection of garbage, replay of
old messages, etc

o If correctly implemented, end-points can be confident
that spies and attackers can’t disrupt their
communication

5/7/2009

ow does HTTPS work?

* HTTPS runs over a form of secured TCP
e This TCP layer is called the Secure Socket Layer or SSL
e Transport Layer Security, or TLS, has started to replace it

 TLS involves three basic phases:
e Peer negotiation for algorithm support
e Key exchange and authentication

e Symmetric cipher encryption and message
authentication

ey exchange step

* This works very much as in our examples
¢ One peer selects a session key and creates a small
certificate for it

« Includes things like the key, the expiration time, a random
number, the identity of the sender

« Designed to prevent man-in-the-middle or replay attacks
¢ Then uses PKI to obtain initial keys
e Then securely send the certificate for the session key

© Outcome: TCP endpoints have key material and have
agreed on the encryption algorithm they are using

| e

Common worries about PKils

© There are actually no widely adopted standards for Ted
to talk to Sally!
e The standard lets Ted talk to Google via gmail
¢ And it lets Sally talk to Google
e But what if Ted and Sally don't trust Google?

* The entire model focuses on trusted vendors
¢ Entities who can pay Verisign for certificates...
¢ This makes sense for buying products on web sites

e The right model for things like group collaboration (e.g
in a medical setting) doesn't really exist yet!

Singlé Sign-On

* A popular refinement
¢ Issue: Ted ends up with accounts at 10 different places

* He wants to sign on once as Ted and have the single
sign-on work at all of those accounts

* For example: “MSN Live Passport”

¢ Idea of Single Sign On is that there can be a company
that holds your keys for various sites

* You log into it once (the single sign-on)
 And it releases certificates you can use at those sites

o, how good is web security?

* More issues
¢ Web browsers have many security issues

¢ Reflects a tension between wanting browser to be
powerful (like able to attach files to email) and wanting
it to be secured

* Overwhelming commercial pressures around
advertising placement don't help at all
» Motivates companies to send you “adware” (== malware
that isn’t exactly malicious but definitely isn’t desired!)
¢ In-flight modifications of web pages, bad web proxies,
other tricks and gotcha’s more and more common...

So, héw good is web security?

e Pretty bad, actually
¢ The cryptographic part works fairly well
e But all the stuff “surrounding” it has weaknesses

° Many machines are vulnerable to viruses that attack
with simple things (like buffer overruns) or by
exploiting known configuration weaknesses

e Like standard preset passwords and passwords that are
way too easy to guess

¢ Some applications can even be tricked into running
commands for an intruder! For example via automated
patch install scripts...

5/7/2009

