Deadlock (part II}

Ken Birman

For example: Locks

Object X, Y:
Process A code: Process B code:
{

/* initial compute */ /* initial compute */
X.acquire(); Y.acquire():
Y.acquire(): X.acquire():

..use Xand Yuse Xand Y ..
Y.release(): X.release();
X.release(): Y.release();

} }

Revisiting resource deadlocks

© There are non-shared computer resources
¢ Maybe more than one instance
* Printers, Semaphores, Tape drives, CPU
* Processes need access to these resources
* Acquire resource
- Ifresource is available, access is granted
« If notavailable, the process is blocked
¢ Use resource
* Release resource
 Undesirable scenario:
* Process A acquires resource 1, and is waiting for resource 2
* Process B acquires resource 2, and is waiting for resource 1
= Deadlock!

2/11/2009

Deadlocks with resources

Definition:

Deadlock exists among a set of processes if
« Every process is waiting for an event
» This event can be caused only by another process in the set
« Event is the acquire of release of another resource

One-lane bridge

minder: Conditions for Process-
Wait Deadlocks to arise

° Mutual Exclusion
e At least one resource must be held is in non-sharable
mode

¢ Hold and wait

o There exists a process holding a resource, and waiting
for another

* No preemption
¢ Resources cannot be preempted
¢ Circular wait

o There exists a set of processes {P,, P,, ... Py}, such that
« P iswaiting for P,, P, for P, and Py for P,

Can we do this for resource wait?

* Observation: the conditions won't be identical

* In particular, a resource-wait cycle might not imply
that a deadlock has occurred

Reminder: Resource Allocation Graph

¢ Deadlock can be described using a resource allocation graph, RAG
¢ The RAG consists of:
« setof vertices V=P UR,
+ where P={P,P,....P,} of processes and R=(R,R, ... R,,} of resources.
¢ Request edge: directed edge from a process to a resource,
« PR implies that P; has requested R;.
« Assignment edge: directed edge from a resource to a process,
+ R—>P, implies that R has been allocated to P;.

¢ If the graph has no cycles, deadlock cannot exist.
o If the graph has a cycle, deadlock may exist.

Res. Alloc. Graph Example

Cycle:
P1-Ri-P2-R2-P1
and there is deadlock.

Same cycle, but no deadlock

Dealing with Deadlocks

 “Reactive” Approaches: break deadlocks if they arise
e Periodically check for evidence of deadlock
= Forexample, using a graph reduction algorithm
« Or just using timeout on the lock acquire operations
e Then need a way to recover
+ Could blue screen and reboot the computer
« Perhaps a thread can give up on what it was trying to do
 Database systems always have a way to “back out” by
“aborting” (rolling back) uncompleted activities
e This lets them abort and then retry if a deadlock arises

2/11/2009

Deadlock Prevention

* Hold and wait
¢ One option: if you need to wait, must release resources, then
re-acquire them after wait is finished (very awkward)
¢ Orsimply request everything all at once in one shot

* These both have issues
@ First approach is inefficient (endlessly acquires/releases the
same things. Also attempt to reacquire a resource may fail)

@ In second, what if you don’t know what resources will be
needed until you actually run the code?

Starvation (if you request lots of very popular resources)
+ Low utilization (Might ask for things you don’t end up needing)

Deadlock Prevention

¢ Can the OS prevent deadlocks?
* Prevention: Negate one of necessary conditions.

e Let’s try one by one... Mutual exclusion
* Make resources sharable

 Not always possible: concurrency conflicts may arise

* Example of a way to “share” a resource
¢ “Initiate work to be done asynchronously
e Later the O/S will do a notification when task finishes

Deadlock Prevention

* No preemption:
» Make resources preemptable (2 approaches)
¢ Preempt requesting processes’ resources if all not available
¢ Preempt resources of waiting processes to satisfy request
* Good when easy to save and restore state of resource

« CPU registers, memory virtualization
¢ Circular wait: (2 approaches)
« Single lock for entire system? (Problems)

e Impose partial ordering on resources, request them in order

2/11/2009

The last option is best

° Many systems use this last approach

Ordering Prevents Circular Wait

¢ Order resources (locki, lockz, ...)

I kind ofcrdri like © Acquire resources in strictly increasing/decreasing order
= TDOSC SF)mE nc o on erlng O TESOIICES, IX¢ * When requests to multiple resources of same order:
alphabetical by name, or by distance from the root of a « Make the request a single operation
tree, or by position on a queue ¢ Intuition: Cycle requires an edge from low to high, and from high to low
- 4 bered node, or t d
o Ask for them in a fixed order (like smaller to larger) SN

¢ This does assume a code structure that respects the \@
rules... if you can’t do so, the approach may not be
feasible in your application

Banker’s Algorithm

Safe State
* Avoids deadlock using an idea similar to the way banks * We'll say that the system (the bank) is in a safe state if
manage credit cards we know that there is some schedule that lets us run

every process to completion
e For each process there is a “line of credit” corresponding to

* When a process completes it releases its resources
its maximum use of each kind of resource e In effect, Sally pays her credit card bill, letting the bank
* E.g. “Sally can borrow up to 10,000 plus up to £1,500 and ¥3,000” collect the money needed to pay Brooks Brothers, where
¢ “Process P can use up to 10Mb of memory, and up to 25Gb of disk storage”

Harry just bought some shirts
* Each separate resource would have its own limit.

* Not every state is safe. Bank is conservative: it makes
¢ Banker needs to be sure that if customers pay their bills, it can pay the you wait (when making a purchase) if granting that
merchants. Banker’s algorithm uses the identical idea for resources. request l‘ight now would leave it in an unsafe state

Safe State with Resources

* Consider a system with processes {P, P,,..., P },

Safe State with Resources

* Consider a system with processes {P, P,,..., P },

e Let’s say that an “execution order” is just an ordering on e Let’s say that an “execution order” is just an ordering on
these processes, perhaps {P,, P,,..., P} these processes, perhaps {P,, P,,..., P}

e If we know the maximum resource needs for each process, * So: P, must be executable “now” (we can satisfy its
we can ask if a given execution order makes sense

maximum need), but then will release resources it holds
e E.g. to run P, perhaps we need a maximum of 10Gb disk space
* We can ask: do we actually have that much available? * Then P, must be executable (if we reclaim P’s resources,
we'll be able to satisfy P’s worst-case needs)

¢ Of course once P, finishes, it will release that space e ... etc until every process is able to complete

Safe State with Resources

° Astate is said to be safe, if it has an execution sequence
{P,, Py,..., P}, such that for each P,
the resources that P; can still request can be satisfied by the

currently available resources plus the resources held by all
P;, where j <1

¢ How do we turn this definition into an algorithm?
¢ The idea is simple: keep track of resource allocations
 If a process makes a request
« Grantit if (and only if) the resulting state is safe
« Delay it if the resulting state would be unsafe

19

p—

Safe State Example

* Suppose there are 12 tape drives
max need current usage _ could ask for

pO 10 5 5
pl 4 2 2
p2 9 2 7

3 drives remain

 current state is safe because a safe sequence exists: <p1,po,p2>
p1 can complete with current resources
po can complete with current+p1
p2 can complete with current +p1+po

¢ if p2 requests 1 drive, then it must wait to avoid unsafe state.

ey

Safe State Example

process holding max claims
A 4

B 4 1
c 2 9

unallocated: 2
deadlock-free sequence: A,C,B

if C makes only 6 requests

However, this sequence is not safe:
If C should have 7 instead of 6 requests, deadlock exists.

2/11/2009

Confusing because...

 Keep in mind that the actual execution may not be the
one that the bank used to convince itself that the state
is safe
* For example, the banker’s algorithm might be looking
ata request for disk space by process P,
e So it thinks “What if I grant this request?”
¢ Computes the resulting resource allocation state
e Then finds that {P,, P,,..., P.} is a possible execution

e ...soitgrants P_’s request. Yet the real execution doesn’t
have to be {P3, P PS} - this was just a worst case option

pr—

Safe State Example

(One resource class only)
process holding max claims

A 4 6
B 4 1
C 2 7

unallocated: 2
safe sequence: A,C,B

If C should have a claim of g instead of 7,
there is no safe sequence.

Res. Alloc. Graph Algorithm

 Recall our resource allocation graphs... in fact the Banker’s
Algorithm works by finding a graph reduction sequence:
 Forarequested resource it computes the resulting resource
allocation graph in which every process requests its maximum need
¢ Then checks to see if that graph can be reduced. If so the state is
safe and the request is granted. If not the request must wait.

¢ Graph reduction order is the “safe schedule”

Banker’s Algorithm

* So...
e A process pre-declares its worst-case needs
e Then it asks for what it “really” needs, a little at a time
e The algorithm decides when to grant requests
e It delays a request unless:
e It can find a sequence of processes...
e ... such that it could grant their outstanding need...
e ... so they would terminate...
e ... letting it collect their resources...

e ...and in this way it can execute everything to
completion!

| s

Banker’s Algorithm

* Decides whether to grant a resource request.
¢ Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i

max[1..n,1..mJmax demand of each Pi for each Ri
allocation[1..n,1.m] current allocation of resource Rj fo Pi
need[1..n,1.m] max # resource Rj that Pi may still request

let request[i] be vector of # of resource Rj Process Pi wants

afet;/ Check

free[1.m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find an i such that finish[i]=false and nheed[i] <= work
/* find a proc that can complete its request now */
if ho such i exists, go to step 3 /* we're done */

Step 2: Found an i:
finish [i] = true /* done with this process */
free = free + allocation [i]

/* assume this process were to finish, and its allocation
back to the available list */

go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not

P

Banker’s Algorithm

* How will it really do this?

* So: given a request

2/11/2009

¢ The algorithm will just implement the graph reduction
method for resource graphs

¢ Graph reduction is “like” finding a sequence of processes
that can be executed to completion

e Build a resource graph
* See if it is reducible, only grant request if so

e Else must delay the request until someone releases some
resources, at which point can test again

Basic Algorithm

e

If request([i] > need[i] then
error (asked for too much)
If requestl[i] > available[i] then
wait (can't supply it now)
Resources are available to satisfy the request
Let's assume that we satisfy the request. Then we would have:
available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]
Now, check if this would leave us in a safe state:
if yes, grant the request,
if no, then leave the state as is and cause process to wait.

e

Banker’s Algorithm: Example

this is a safe state: safe sequence <Pi, P3, P4, P2, Po>

Suppose that P1 requests (1,0,2)

Allocation Max Available
ABC AB C ABC
PO 01 753 332
PL 200 322
P2 302 9 02
P3 21 1 2.2 2
P4 00 2 4 3 3

- add it to Pr’s allocation and subtract it from Available

anker’s Algorithm: Example

Allocation Max

Available
Max
5
2
[}
2
3

PO 230
P1
P3

P4

O

N
HNOWND
whNNWO

This is still safe: safe seq <P1, P3, P4, Po, P2>

In this new state,
P4 requests (3,3,0)
not enough available resources

Po requests (0,2,0)
let’s check resulting state

p—

Problems with Banker’s Alg.

© May be hard to figure out the maximum needs
¢ If too conservative, Bank doesn't allow any parallelism
* But if too optimistic, a process could exceed its limit
« It can request a bigger limit (a bigger “line of credit”)
» We can grant that request if the state would still be safe

« But we might not be able to do so, and in that case the process
would have to wait, or be terminated

* Some real systems use Banker’s Algorithm but it isn’t
very common. Many just impose limits
¢ If resource exhaustion occurs, they blue screen

Banker’s Algorithm: Example

Allocation Max Available
ABC ABC ABC
PO 030 7 53 210
P1 302 3 2 2
P2 302 9 0 2
P3 21 1 222
P4 00 2 43 3

This is unsafe state (why?)
So Po’s request will be denied

Problems with Banker’s Algorithm?

2/11/2009

pr—

Deadlock summary

* We've looked at two kinds of systems

¢ Process-wait situations, where “process P is waiting for
process Q” - common when using locks

* Resource-wait situations, where “Process P needs
resource R” — more general
* We identified necessary conditions for deadlock in the
process-wait case
* We found ways to test for deadlock
* And we developed ways to build deadlock-free systems,
such as ordered requests and Bankers Algorithm

ey

Real systems?

* Some real systems use these techniques

e Others just recommend that you impose time-limits
whenever you wait, for anything

¢ But you need to decide what you'll do when a timeout
expires!

* Database transactions are a very effective option, but
only if you are working with databases or files.

