
CS415 Project #6: File System

Krzysztof Ostrowski
krzys@cs.cornell.edu

What do you have to do?

Implement a virtual file system
– On top of a raw virtual block device provided by us

• Storing all blocks of the virtual disk device in a single file
• Single filesystem on single device, without mount points etc.

– With a UNIX-like interface
– With support for:

• Creation of files of variable size (using disk space efficiently)
• Reclaiming unused storage from deleted files
• A hierarchy of nested directories
• Concurrent access to the SAME files by multiple threads

Sequence of actions
Development plan:

Get familiar with the block device you get
Get familar with the API you need to cover
– Together with the parameters and semantics

Decide on details of disk organization
– How are directories kept, inodes, superblock etc.

Decide on semantics with concurrent access
Implement
Perform extensive testing
– In particular, concurrent operations on files

What do you get?
Our virtual device
– Block are kept in a regular NT file

• Our disk can also be "created", "spinned-up" etc.
– ...which corresponds to a file being created or opened.

• We support just one disk, in a file MINIFILESYSTEM
– Attach it and spin it up as a part of system startup

– A raw stream of bytes: no organization
• Need your own structures: i-nodes, free blocks etc.
• Need to create any such structures on disk yourself

– Write a system tool "mkfs.exe" or auto-create on startup

What do you get?
Our virtual device
– Supports block-level operations

• Specify block number + provide a buffer to read/write
– Block size is fixed to 4K, hard-coded into the system

– Works asynchronously (just like a real device)
• You schedule requests by a control call to the device

– A limited number of requests may be processed at a time!
– Requests can be arbitrarily delayed and re-ordered, need to

take reordering into account e.g. when appending data
• Notification is received as an interrupt

– We let you register a special type of interrupt handler

Our virtual block device

Creating a new virtual disk
int disk_create(disk_t* disk, char* name,

int size, int flags);

– creates a disk with a given "name" (in a given NT file)
– flags: DISK_READWRITE or DISK_READONLY
– actually, size and flags are stored in the file...

• ...so the disk "remembers" this information

Accessing an existing disk
int disk_startup(disk_t* disk, char* name);

– returns a handle to the disk with a given "name"

Our virtual block device
Sending requests to the device
int disk_send_request(

disk_t* disk, int blocknum, char* buffer,
disk_request_type_t type);

– request types:

DISK_RESET -- cancel any pending requests etc.
DISK_SHUTDOWN -- flush buffers / shutdown the device
DISK_READ -- read a single block
DISK_WRITE -- write a single block

– requests are handled asynchronously
– returns 0 if success, -1 on error, -2 if too many requests

– wrappers: disk_read_block / disk_write_block

Our virtual block device
Interrupt handler
– As usual, you need to install your own:
install_disk_handler(

interrupt_handler_t handler);

– Arguments passed to the handler:
typedef struct
{

disk_t* disk;
disk_request_t request;
disk_reply_t reply; See the next page!

} disk_interrupt_arg_t;

Our virtual block device
Notification received in the interrupt:

DISK_REPLY_OK operation succeeded

DISK_REPLY_FAILED disk failed on this request
for no apparent reason

DISK_REPLY_ERROR disk nonexistent or block
outside disk requested

DISK_REPLY_CRASHED it happens occasionally

What do you provide?
Files:
– Creation / deletion ("unlink")
– Open (an existing file in a specific mode) / close

• Modes are more or less as in "fopen" in UNIX
• Sequential reading, writing (w. truncation), appending
• Any reasonable combinations of all the above

– Read or write a chunk of data (for an open file)
• Position in file unspecified, operations are sequential
• Of any size, not necessarily a multiple of block size
• Blocking operations, return when completed or failed
• But: may read less data than requested (if not there)

What do you provide?
Files:
– Only sequential access (no "fseek")

• Reading starts from the beginning, proceeds to end
• Writing likewise + also causes the file to be truncated
• Appending starts at the end of the existing file
• Writing / appending causes the file to be "enlarged"

– Binary
• Don’t assume 0-terminated strings, newlines etc.

– Concurrent access
• A notion of "cursor" that indicates read / write position

– A separate cursor is maintained for each thread
• Restrictions apply, choose semantics (see below)

What do you provide?
Directories:
– Creation and deletion – affects the filesystem
– Change and get current directory

• Current directory is a local, per-process parameter
– No global variables here!

• Does not have any effect on the filesystem
– List contents of the current directory

General:
– Check status of an object (file / directory)

• Whether directory or a regular file
• ...and if regular file, what is its current size

The API you need to cover
minifile_t minifile_creat(char *filename);
minifile_t minifile_open(

char *filename, char *mode);
argument "mode" is treated in the same way as in "fopen"

int minifile_read(
minifile_t file, char *data, int maxlen);

int minifile_write(
minifile_t file, char *data, int len);
"read" / "write" return the actual num. of bytes read/written

int minifile_close(minifile_t);
int minifile_unlink(char *filename);

"unlink" deletes the specified file

The API you need to cover
int minifile_mkdir(char *dirname);
int minifile_rmdir(char *dirname);

int minifile_stat(char *path);
check the type (regular file / directory) and size of given file

int minifile_cd(char *path);
char **minifile_ls(char *path);

char *minifile_pwd();
return the current dir. (the path to it) for the calling thread

Paths as usually in UNIX-like systems

/dir1/dir2/ ... /dirn/filename

Disk organization
General structure
– Superblock (global info)

• Pointer to the root inode (main dir.)
• Pointer to the first free i-node...

– ...if free i-nodes form a linked list
• Pointer to the first free data block
• Statistics

– Numbers of free inodes and blocks
– Overall size of the filesystem

• Magic number (first four bytes)
– Helps detect a legitimate filesystem

superblock
i-node
i-node

i-node
data block
data block

data block

Disk organization
General structure
– i-nodes

• Occupy ~ 10% of disk space
• All information about file / dir.

– Metadata, including type (file/dir.),
size, next i-node on the list etc.

– Name: the only exception (not here)
– Data blocks occupied by the file

» A few (11) addressed directly
» A single indirect block

– Data blocks

superblock
i-node
i-node

i-node
data block
data block

data block

Disk organization
i-nodes

data block
data block

data block
data block

data block
data block
data block
data block
data block
data block

data block

data block

i-node

slot #01
slot #02

slot #11
slot #12

metadata

indirect block

indirect block

Disk organization
Data blocks
– Files: binary, directly in blocks
– Directories:

• A special, fixed format (you choose)
– Can be either ASCII or binary

• Entries per file:
– name (allow for at least 256 characters)
– i-node number (for the "main" i-node)

• A special type (DIRECTORY)
– But: keep types in i-nodes, not here

• Don’t bother about fancy structures
– Assume just a linear search for a file

superblock
i-node
i-node

i-node
data block
data block

data block

Concurrent access
Read / write : three approaches
– Approach #1: Unix Semantics (much preferred)

• Allow multiple writers to the same file
• Don’t give any guarantees about the integrity of files

– The result of concurrent writes may be a mix of both writes...
– ...which in general may not represent anything sensible

A1
B2

B1
A2

?

P1: A1possibly nonsense
A1 B1
B1

A
B

A2
B2

P2:

B2
A2

Concurrent access
– Approach #1 (continued)

• Argument in favor if this method: end-to-end principle
• Simple... but: need to preserve integrity of the FS!

– Cannot just use a naive write that just overwrites i-nodes...
...as this could lead to generation of orphaned data blocks

– So you need consistent, synchronized metadata updates!

– Approach #2: Multiple Readers / Single Writer
• Concurrency semantics at the "data blocks" level

– Multiple readers and writers can open the SAME file...
– ...and hold usable handles, open for write never blocks
– Actual read/write synchronized: at most one writer
– Multi-block atomicity: avoids problems of the first approach

Concurrent access
– Approach #3: Windows Semantics

• Either multiple readers OR a (single at most) writer
– Enforced at the time files are being opened
– Quite restrictive: applications may keep unused resources!

• Arguably easiest, but not recommended

Concurrent access
Access and deletion
– Approach #1: Windows Semantics

• Deletion fails when file is currently being read / written
– Approach #2: Unix Semantics (much preferred)

• File is immediately made unusable
– Removed immediately from directory structures...
– ...but its blocks are not placed on the free list yet

• Applications using the file operate unaffected
• As soon as the last application closes, actually delete

– Need to keep reference count of open handles
– Last applicaton to close the file actually recycles its blocks
– All changes made after deletion are lost

Implementation issues
Interfaces:
– Don’t change APIs in any way (need for testing)
– Don’t need to report detailed error codes

Correctness:
– Since disk controllers may reorder requests...

• Can’t issue concurrent requests for blocks that are to
be written sequentially (need to wait)

– Need to handle crashes smoothly:
• Ctrl+C: system should be left in consistent state
• Disk crashes: don’t issue any more requests to it

Implementation issues
Efficiency:
– Don’t go overly complex with data structures

• A single i-node per block highly recommended, for
access speed as well as overall simplicity

– Correctness is more important
• Breath-taking performance won’t help if your system

doesn’t work as specified...
– ...so be conservative with optimizations: basic things first...
– ...and leave any fancy enhancements for the very end of it!

Source Files

Provided by us
– The virtual block device
disk.h / disk.c

– A simple shell for testing purposes
shell.c

For you to implement
– The filesystem layer
minifile.h / minifile.c

Testing
You can test with the supplied shell program
– Create dirs, navigate, list, read/write files etc.

But: you should write your own tests as well!
– Try reading and writing small or large files
– Try concurrent access by multiple threads

• This is probably the hardest test of all, don’t omit it
– Do verify consistency of your filesystem!
– Check correctness of the written data...

• ...according to the semantics you chose to support.
– Test if you handle disk/system crashes properly

General guidelines
Make sure scheduler / synchronization work!
Split all development process into little steps:
– Creating / verifying overall structure of the disk

• Needed anyway to do any testing
• Don’t know if your stuff really works if you don’t verify

– ...the absence of visible errors is not a proof of corectness!
– Directories

• Creating an i-node + creating a directory structure
• Adding a per-process path to "current directory", then navigating

– Creating / deleting files
• Single process first (implement + test), then add synchronization

– Reading / writing, truncating / enlarging
• Start from a single process, maintain cursor etc.
• Add synchronization, test with multiple readers and writers

	CS415 Project #6: File System
	What do you have to do?
	Sequence of actions
	What do you get?
	What do you get?
	Our virtual block device
	Our virtual block device
	Our virtual block device
	Our virtual block device
	What do you provide?
	What do you provide?
	What do you provide?
	The API you need to cover
	The API you need to cover
	Disk organization
	Disk organization
	Disk organization
	Disk organization
	Concurrent access
	Concurrent access
	Concurrent access
	Concurrent access
	Implementation issues
	Implementation issues
	Source Files
	Testing
	General guidelines

