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What do you have to do?

Implement a virtual file system
– On top of a raw virtual block device provided by us

• Storing all blocks of the virtual disk device in a single file
• Single filesystem on single device, without mount points etc.

– With a UNIX-like interface
– With support for:

• Creation of files of variable size (using disk space efficiently)
• Reclaiming unused storage from deleted files
• A hierarchy of nested directories
• Concurrent access to the SAME files by multiple threads



Sequence of actions
Development plan:

Get familiar with the block device you get
Get familar with the API you need to cover
– Together with the parameters and semantics

Decide on details of disk organization
– How are directories kept, inodes, superblock etc.

Decide on semantics with concurrent access
Implement
Perform extensive testing
– In particular, concurrent operations on files



What do you get?
Our virtual device
– Block are kept in a regular NT file

• Our disk can also be "created", "spinned-up" etc.
– ...which corresponds to a file being created or opened.

• We support just one disk, in a file MINIFILESYSTEM
– Attach it and spin it up as a part of system startup

– A raw stream of bytes: no organization
• Need your own structures: i-nodes, free blocks etc.
• Need to create any such structures on disk yourself

– Write a system tool "mkfs.exe" or auto-create on startup



What do you get?
Our virtual device
– Supports block-level operations

• Specify block number + provide a buffer to read/write
– Block size is fixed to 4K, hard-coded into the system

– Works asynchronously (just like a real device)
• You schedule requests by a control call to the device

– A limited number of requests may be processed at a time!
– Requests can be arbitrarily delayed and re-ordered, need to 

take reordering into account e.g. when appending data
• Notification is received as an interrupt

– We let you register a special type of interrupt handler



Our virtual block device

Creating a new virtual disk
int disk_create(disk_t* disk, char* name, 

int size, int flags);

– creates a disk with a given "name" (in a given NT file)
– flags: DISK_READWRITE or DISK_READONLY
– actually, size and flags are stored in the file...

• ...so the disk "remembers" this information

Accessing an existing disk
int disk_startup(disk_t* disk, char* name);

– returns a handle to the disk with a given "name"



Our virtual block device
Sending requests to the device
int disk_send_request(

disk_t* disk, int blocknum, char* buffer,
disk_request_type_t type);

– request types: 

DISK_RESET -- cancel any pending requests etc.
DISK_SHUTDOWN -- flush buffers / shutdown the device
DISK_READ -- read a single block
DISK_WRITE -- write a single block

– requests are handled asynchronously
– returns 0 if success, -1 on error, -2 if too many requests

– wrappers: disk_read_block / disk_write_block



Our virtual block device
Interrupt handler
– As usual, you need to install your own:
install_disk_handler(

interrupt_handler_t handler);

– Arguments passed to the handler: 
typedef struct
{

disk_t* disk;
disk_request_t request;
disk_reply_t reply; See the next page!

} disk_interrupt_arg_t;



Our virtual block device
Notification received in the interrupt:

DISK_REPLY_OK operation succeeded

DISK_REPLY_FAILED disk failed on this request 
for no apparent reason

DISK_REPLY_ERROR disk nonexistent or block 
outside disk requested

DISK_REPLY_CRASHED it happens occasionally



What do you provide?
Files:
– Creation / deletion ("unlink")
– Open (an existing file in a specific mode) / close

• Modes are more or less as in "fopen" in UNIX
• Sequential reading, writing (w. truncation), appending
• Any reasonable combinations of all the above

– Read or write a chunk of data (for an open file)
• Position in file unspecified, operations are sequential
• Of any size, not necessarily a multiple of block size
• Blocking operations, return when completed or failed
• But: may read less data than requested (if not there)



What do you provide?
Files:
– Only sequential access (no "fseek")

• Reading starts from the beginning, proceeds to end
• Writing likewise + also causes the file to be truncated
• Appending starts at the end of the existing file
• Writing / appending causes the file to be "enlarged"

– Binary
• Don’t assume 0-terminated strings, newlines etc.

– Concurrent access
• A notion of "cursor" that indicates read / write position

– A separate cursor is maintained for each thread
• Restrictions apply, choose semantics (see below)



What do you provide?
Directories:
– Creation and deletion – affects the filesystem
– Change and get current directory

• Current directory is a local, per-process parameter
– No global variables here!

• Does not have any effect on the filesystem
– List contents of the current directory

General:
– Check status of an object (file / directory)

• Whether directory or a regular file
• ...and if regular file, what is its current size



The API you need to cover
minifile_t minifile_creat(char *filename);
minifile_t minifile_open(

char *filename, char *mode);
argument "mode" is treated in the same way as in "fopen"

int minifile_read(
minifile_t file, char *data, int maxlen);

int minifile_write(
minifile_t file, char *data, int len);
"read" / "write" return the actual num. of bytes read/written

int minifile_close(minifile_t);
int minifile_unlink(char *filename);

"unlink" deletes the specified file



The API you need to cover
int minifile_mkdir(char *dirname);
int minifile_rmdir(char *dirname);

int minifile_stat(char *path);
check the type (regular file / directory) and size of given file

int minifile_cd(char *path);
char **minifile_ls(char *path);

char *minifile_pwd();
return the current dir. (the path to it) for the calling thread

Paths as usually in UNIX-like systems

/dir1/dir2/ ... /dirn/filename



Disk organization
General structure
– Superblock (global info)

• Pointer to the root inode (main dir.)
• Pointer to the first free i-node...

– ...if free i-nodes form a linked list
• Pointer to the first free data block
• Statistics

– Numbers of free inodes and blocks
– Overall size of the filesystem

• Magic number (first four bytes)
– Helps detect a legitimate filesystem

superblock
i-node
i-node

i-node
data block
data block

data block



Disk organization
General structure
– i-nodes

• Occupy ~ 10% of disk space
• All information about file / dir.

– Metadata, including type (file/dir.), 
size, next i-node on the list etc.

– Name: the only exception (not here)
– Data blocks occupied by the file

» A few (11) addressed directly
» A single indirect block

– Data blocks

superblock
i-node
i-node

i-node
data block
data block

data block



Disk organization
i-nodes

data block
data block

data block
data block

data block
data block
data block
data block
data block
data block

data block

data block

i-node

slot #01
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slot #11
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metadata
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Disk organization
Data blocks
– Files: binary, directly in blocks
– Directories:

• A special, fixed format (you choose)
– Can be either ASCII or binary

• Entries per file:
– name (allow for at least 256 characters)
– i-node number (for the "main" i-node)

• A special type (DIRECTORY)
– But: keep types in i-nodes, not here

• Don’t bother about fancy structures
– Assume just a linear search for a file

superblock
i-node
i-node

i-node
data block
data block

data block



Concurrent access
Read / write : three approaches
– Approach #1: Unix Semantics (much preferred)

• Allow multiple writers to the same file
• Don’t give any guarantees about the integrity of files

– The result of concurrent writes may be a mix of both writes...
– ...which in general may not represent anything sensible
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B1
A2
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Concurrent access
– Approach #1 (continued)

• Argument in favor if this method: end-to-end principle
• Simple... but: need to preserve integrity of the FS!

– Cannot just use a naive write that just overwrites i-nodes...
...as this could lead to generation of orphaned data blocks

– So you need consistent, synchronized metadata updates!

– Approach #2: Multiple Readers / Single Writer
• Concurrency semantics at the "data blocks" level

– Multiple readers and writers can open the SAME file...
– ...and hold usable handles, open for write never blocks
– Actual read/write synchronized: at most one writer
– Multi-block atomicity: avoids problems of the first approach



Concurrent access
– Approach #3: Windows Semantics

• Either multiple readers OR a (single at most) writer
– Enforced at the time files are being opened
– Quite restrictive: applications may keep unused resources!

• Arguably easiest, but not recommended



Concurrent access
Access and deletion
– Approach #1: Windows Semantics

• Deletion fails when file is currently being read / written
– Approach #2: Unix Semantics (much preferred)

• File is immediately made unusable
– Removed immediately from directory structures...
– ...but its blocks are not placed on the free list yet

• Applications using the file operate unaffected
• As soon as the last application closes, actually delete

– Need to keep reference count of open handles
– Last applicaton to close the file actually recycles its blocks
– All changes made after deletion are lost



Implementation issues
Interfaces:
– Don’t change APIs in any way (need for testing)
– Don’t need to report detailed error codes

Correctness:
– Since disk controllers may reorder requests...

• Can’t issue concurrent requests for blocks that are to 
be written sequentially (need to wait)

– Need to handle crashes smoothly:
• Ctrl+C: system should be left in consistent state
• Disk crashes: don’t issue any more requests to it



Implementation issues
Efficiency:
– Don’t go overly complex with data structures

• A single i-node per block highly recommended, for 
access speed as well as overall simplicity

– Correctness is more important
• Breath-taking performance won’t help if your system 

doesn’t work as specified...
– ...so be conservative with optimizations: basic things first...
– ...and leave any fancy enhancements for the very end of it!



Source Files

Provided by us
– The virtual block device
disk.h / disk.c

– A simple shell for testing purposes
shell.c

For you to implement
– The filesystem layer
minifile.h / minifile.c



Testing
You can test with the supplied shell program
– Create dirs, navigate, list, read/write files etc.

But: you should write your own tests as well!
– Try reading and writing small or large files
– Try concurrent access by multiple threads

• This is probably the hardest test of all, don’t omit it
– Do verify consistency of your filesystem!
– Check correctness of the written data...

• ...according to the semantics you chose to support.
– Test if you handle disk/system crashes properly



General guidelines
Make sure scheduler / synchronization work!
Split all development process into little steps:
– Creating / verifying overall structure of the disk

• Needed anyway to do any testing
• Don’t know if your stuff really works if you don’t verify

– ...the absence of visible errors is not a proof of corectness!
– Directories

• Creating an i-node + creating a directory structure
• Adding a per-process path to "current directory", then navigating

– Creating / deleting files
• Single process first (implement + test), then add synchronization

– Reading / writing, truncating / enlarging
• Start from a single process, maintain cursor etc.
• Add synchronization, test with multiple readers and writers
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