CS433 — Technology
Overview

Scott Selikoff
Cornell University.
November 13, 2002

Outline

> |. Introduction

> |l. Stored Procedures

> lll. Java Beans

> V. JSPs/Servlets

> V. JSPs vs. Servlets

> VI. XML Introduction

> VII. XSLT Introduction

> VIII. JSP vs. JSSP/XML/XSLT Combo
> IX. Closing

|. Introduction

> The focus of this lecture is to get you familiar
with each of the technologies you have at your
disposal.

> Afterwards, you should have a general notion of
when to use each technology and why.

> There is a myriad of information available on the
web for each technology to help you out. [f you
are having trouble, try looking for help onithe
web first, before using the newsgroups or e-
mailing a TA, since this is what you would have
to do in practice.

|l. Stored Procedures

> Your next project will be on SPs and will be out
shortly.

> SPs offer many efficiency advantages because
they execute on the server computer and are
precompiled. This means there is no network
delay when they are executed, nor is there any
runtime compilation required.

> They can be written in a variety of languages
and often DB’s will differ greatly on the precise
syntax of a SP.

> To use a SP, you must place it in the special SP
area of the DB Management System.

Types of SPs

> All SPs have input and output variables.
> SQL SP: A prewritten SQL Statement as so:

CREATE PROCEDURE GetAllProducts

> Java SP: This just a SP written in Java the
same way you would write it in a JSP file.

> See HW for instructions and examples on how. to
calla SP

When to Prefer a SP

> When you need to do a complex query over and
over again, a SP is a definite advantage.

> Many SPs can be accessed like database Views
in that you can return them as a result set and
merge them with other results sets

> Especially useful for setting up simple Database
security quickly and easily. Just allow users
access to specific SPs and no direct DB access.

[1l., Java Beans

> Used to Pass Information From an HTML
form to a JSP/Serviet

> Often, you have a JSP generate an HTML
form. The HTML then submits its
information to a JSP (could be the same
JSP) that parses the data using the Bean
class

> Beans can be used as simple I/O for forms
or contain more complex functionality.

More on Java Beans

> First, you must compile the Servlet .java
file to be a .class file.

» Then, place the class file in the directory:
\WEB-INF\Classes

> To Use a Java Bean inia JSP/Serviet,
include it in your list of header files.

Example Java Bean

public class LoginData {
String username
String password

public void setUsername(String value) {
if (value != null)
user = value;
} /I setUsername()

public void setPassword(String value) {
if (value != null)
userlD = value;
} /I setPassword()

public String getUserName() {
return(username.toLowerCase());
} /I getUserName()

public String getPassword() {
return(password);
} /I getPassword()

Example Use of Java Bean

<form METHOD=POST ACTION="login.jsp">
<INPUT TYPE = "text" NAME=“User" SIZE="20" MAXLENGTH="20">
<INPUT TYPE = "password" NAME=*“Pass" SIZE="20" MAXLENGTH="20">
<INPUT TYPE = “submit” VALUE = "Login">

</form>

<%@page import="LoginData"%>

<jsp:useBean id="userParams" class="LoginData">
<jsp:setProperty name="userParams”
property="username”
param="User"/>
<jsp:setProperty name="userParams"
property="password"
param="Pass"/>
</jsp:useBean>

<%
out.println(userParams.getUserName()+”, "+userParams.getPassword())
l%))

V. JSPs/Servlets

> JSPs/Servlets: You should all know how.
to make a JSP from the last assignment.

» JSPs and Servlet are functionally identical.
Anything you can do with a JSP, you can
do with a Servlet and visa versa.

> The difference lies with how you call them.

JSP = Serviet Conversion

How To Call a Serviet

> First, you must compile the Servlet .java
file to be a .class file.

> Then, place the class file in the directory:
\WEB-INF\Classes
> Restart Tomcat
» Access the Servlet as:
http://localhost/serviet/ClassName

V. JSPs vs. Servilets

» Many reasons for choosing one over the
other, although most of them are based on
iIssues of style.

Why/When to Prefer a JSP

> Can use HTML code directly.

» Often Easier to Use. Tomcat will
recompile them for you.

» Especially useful if your page is
functionally simple or contains a great
deal of HTML

> Often preserves relative paths better than
a Servlet does.

Why/When to Prefer a Serviet

> Better if your code is functionally
complex.

> Better if the page is being used a stand-
alone function.

> Servlets are safer for copy protection. You
can give someone a Servlet class file to
use without giving out your source code.

V1. XML Introduction

> XML is a data format, not a language

» The structure of XML is extremely simple
since in its most general form, it has very
little structure at all. You impose the
structure to meet your needs.

> HTML is a dirty subset of XML. | use the
term ‘dirty” since strict HTML is not often
practiced.

Example XML File

<Shopping Basket>
<Product PID = “1">
<PID>1</PID>
<Title>Coca-Cola Soda</Title>
<Company>Coca-Cola</Company>
<Price>0.75</Price>
</Product>
<Product PID = “3">
<Title>TV-Guide</Title>
<PID>3</PID>
<Price></Price>
<Title>TV-Guide</Title>
</Product>
<Product/>
</Shopping Basket>

’

’

’

General XML Structure

All Open tags MUST have a closed tag or be
empty. The “/" at the end of the tag signifies an
empty tag.

Most interpreters consider < and >
characters to be reserved.

Tags can contain data. In the previous slide,
the PID is listed in two places, but only one is
actually necessary. Most interpreters would
consider both implementations equivalent.

> Some interpreters also require that if you embed

data in tags, you use double quotes around the
data.

XML Structure Continued

In general, XML is line-break and space
insensitive, but tags are often case sensitive.

In general, XML does not care about data
consistency. For example: missing tags, data,
or values is fine since XML does not have any
structure except that which you impose.

> Tags on the same level are usually order

insensitive. Meaning an items attributes can be
listed in any order for any: item.

10

VII. XSLT Introduction

> XSLT: An XML file converts XML = XML

> An XSLT only considers special XSLT tags as
being in the XML Language. (all other XML tags
are completely ignored)

> An XSLT can be applied to ANY XML file. If any
information is unavailable in the XML file, the
XSLT will simply either ignore it or return blank
strings.

> Text or tags not handled by the XSLT directly is
always outputted to the final XML file exactly as
it appears in the XSLT file.

Example XSLT

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet version="1.0" xmlns:xs|="http://www.w3.0rg/1999/XSL/Transform">

<HTML><BODY>
<TITLE>Search Results</TITLE>
XSLTs will ignore anything not starting with a xsl tag!!!

<xsl:template match="/Shopping Basket">
<xsl:for-each select="/Product">
You have <xsl:value-of select="string(./Title)"/> in your cart.

The price of this item is: <xsl:value-of select="string(./Price)"/>

Pid # <xsl:value-of select="string(./Pid)"/>

<HR>
</xsl:for-each>
</BODY></HTML>

</xsl:template>
</xsl:stylesheet>

11

XSLT Use

> The most important strategy you will be using XSLTs
for is converting XML data from your database into
HTML.

Strategy: First, create a JSP that reads from the
database and outputs XML. Second, create an HTML
file of how you would like the page you are creating to
look using made-up data.

Once you like how the HTML file looks, create the XSLT
file by adding an XSLT header to the HTML file and
adding xsl-select statements where the data is. Finally,
have your original JSP call the XSLT to parse the
XML data and display the output to the user.

XSLT Use Continued

XSLTs can have complex logic but should only contain
the bare minimum. xs/:select, xsl:for-each. and xsl:if
should be all you need. If you need a lot more, you
probably should be doing it in the JSP.

Conversions of Data types into specially formatted
strings like Date/Time should be done in the JSP.

12

VIII. JSP/HTML vs. the
JSP/XML/XSLT/HTML Combo

> One might ask why go through all this work of
using JSP’s, XMLs, XSLTs, and HTML if you
can just output directly to HTML as you did in the
JSP assignment?

> Certainly JSPs seem easy!

> And if the Combo is better, should we always
use it?

Why to Prefer the Combo

> It’s a million times easier to update later on.
Anyone who’s done a little of both styles on a

major project can verify this.

> The most crucial code is extremely sensitive
to error. The JSP is the single most complex
component of the Combo. But because the JSP
initially just produces XML, it is extremely easy
to debug and verify correctness.

> The least important crucial code is extremely
insensitive to error. The XSLT will work under
a variety of circumstances and won’t break your
entire site if something small is missing.

13

When to Prefer the Combo

> When you need to read a lot of information from
the database and you aren’t doing anything too
complex.

> Examples include: Search Results, User Home
Pages, Product Information Pages, etc.

> In general, use it in READONLY environments
with the exception of checking for the user to be
logged ini or for his username.

When NOT to Prefer the Combo

> When you processing a lot information and are
not reading a lot from the database that needs to
be displayed to the user.

> Examples include: order confirmation pages,
new user forms, new product forms, login pages,
etc.

14

IX. Closing

> This presentation has been designed with the
intention of giving you a general overview of all
the different technologies you have at your
disposal.

> Because this Is a project course, it is your
responsibility to use resources like the web to
learn more about each technology and the
precise syntax needed to use them.

> Keep inimind: All these new technologies are
wonderful but sometimes plain, old HTML will
suffice. Example: Search Pages

15

