7L

Evaluating Relational Operations:
Part I

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 1

Relational Operators :

% Select

< Project

% Join

< Set operations (union, intersect, except)
< Aggregation

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 2

7

Select Operator

SELECT *
FROM Sailor S
WHERE S.Age =25 AND S.Salary > 100K

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 3

et

Select Operator

< Three cases
% Case 1: No index on any selection attribute

% Case 2: Have “matching” index on all selection
attributes

% Case 3: Have “matching” index on some (but
not all) selection attributes

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 4

S

Case 1: No index on any selection attribute "‘ o

« Assume that select operator is applied over a
relation with N tuples stored in P data pages

+ What is the cost of select operation in this
case (in terms of # 1/Os)?

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 5

7

Select Operator

< Three cases
+ Case 1: No index on any selection attribute

« Case 2: Have “matching” index on all selection
attributes

+ Case 3: Have “matching” index on some (but
not all) selection attributes

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 6

Case 2: Example

SELECT *
FROM Sailor S
WHERE S.Age =25 AND S.Salary > 100K

+ Have B+-tree index on (Age, Salary)

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 7

s o

Case 2: Cost Components :

Component 1: Traversing index

Index Cost for B+-trees?
For hash indices?

File

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 8

Case 2: Cost Components <

Component 2: Traversing
sub-set of data entries in index

Index

File

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 9

et

Case 2: Cost Components

Component 3: Fetching actual
data records (alternative 2 or 3)
Index

AXN

File ‘ ‘

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 10

s o

Cost of Component 1

% D is cost of reading/writing one page to disk
(using random disk I/O)

+ Hash index
* Cost=D

& B+-tree
= Cost =D * (height of tree)

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 1

7

+ N data entries (= # data tuples if alternative 2)
+ Hash index

= Linear hashing

= B hash buckets

= Average cost= D * (N/B-1)
% B+ tree index

Cost of Component 2

= L = average number of entries per leaf page
= S = Selectivity (fraction of tuples satisfying selection)
= Average cost= D * ((S*N/L)-1)

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 12

¢ =
S
© 9

Cost of Component 3

+ S*N data entries satisfy selection condition
= Sis selectivity, N is total number of data entries
% T is number of data tuples per page
+ Hash index
= Worst-case cost= D * S * N (if unclustered index)
D * S * N /T (if clustered index)
% B+ tree index
= Worst-case cost = Same as hash index

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 13

s o

Putting it all together

+ Total cost of select operations using
unclustered B+ tree index

» D * (Height + (S*N/L -1) +S*N)

< Should we always use index in this case?
=Depends on selectivity of selection condition!
=D * (Height + (S*N/L -1) +S*N) <D * P
*S < (P - Height + 1) * L / N(L + 1)
=Simple optimization!

+ What about a clustered index?

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 14

Component 3: Optimization

< Alternative 2 or 3, unclustered index

+ Find qualifying data entries from index

% Sort the rids of the data entries to be retrieved
= Remember rid = (page ID, slot #)

% Fetch rids in order

= Ensures each data page is read from disk just
once!

= Although number of data pages retrieved still
likely to be more than with clustering

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 15

Select Operator %]
< Three cases

% Case 1: No index on any selection attribute

% Case 2: Have “matching” index on all selection
attributes

% Case 3: Have “matching” index on some (but
not all) selection attributes

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 16

s o

Case 3: Example

SELECT *
FROM Sailor S
WHERE S.Age =25 AND S.Salary > 100K

+ Have Hash index on Age

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 17

el

Evaluation Alternatives

< Alternative 1

= Use available index (on Age) to get superset of
relevant data entries

= Retrieve the tuples corresponding to the set of
data entries

= Apply remaining predicates on retrieved tuples
= Return those tuples that satisfy all predicates

% Alternative 2
= Sequential scan! (always available)

* May be better depending on selectivity

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 18

Case 3: Example

SELECT *
FROM Sailor S
WHERE S.Age =25 AND S.Salary > 100K

<+ Have Hash index on Age
<+ Have B+ tree index on Salary

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 19

Evaluation Alternatives

< Alternative 1

= Choose most selective access path (index)
* Could be index on Age or Salary, depending on
selectivity of the corresponding predicates

= Use this index to get superset of relevant data
entries

= Retrieve the tuples corresponding to the set of
data entries

= Apply remaining predicates on retrieved tuples
= Return those tuples that satisfy all predicates

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 20

el

Evaluation Alternatives

< Alternative 2
= Get rids of data records using each index
¢ Use index on Age and index on Salary
= Intersect the rids
* We'll discuss intersection soon
= Retrieve the tuples corresponding to the rids
= Apply remaining predicates on retrieved tuples
= Return those tuples that satisfy all predicates

« Alternative 3
= Sequential scan!

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 21

Relational Operators

% Select

< Project

% Join

% Set operations (union, intersect, except)
< Aggregation

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

i‘l:
’
)

Example

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

s o

Evaluation Alternatives

< Alternative 1

= Using Indices
< Alternative 2

= Based on sorting
% Alternative 3

= Based on hashing

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Example

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

« Have B+ tree index on (Name, Age)

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Evaluation Using “Covering” Index

<« Simply scan leaf levels of index structure
* No need to retrieve actual data records
= Index-only scan
% Works so long as the index search key includes all the
projection attributes
= Extra attributes in search key are okay
= Best if projection attributes are prefix of search key
¢ Can eliminate duplicates in single pass of index-only scan
% Other examples

= Hash index on (SSN, Name, Age)
= B+ tree index on (Age, # Dependents, Name)

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Example é‘i;g%

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

< Have Hash index on Name
« Have B+ tree index on Age
« Sailor relation has 100 other attributes!

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Dy

Evaluation Using RID Joins %

% Retrieve (SearchKey1, RID) pairs from first
index

% Retrieve (SearchKey2, RID) pairs from second
index

% Join these based on RID to get (SearchKey1,
SearchKey2, RID) triples

= We will discuss joins soon!

< Project out the third column to get the desired
result

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Evaluation Alternatives o

% Alternative 1

= Using Indices
% Alternative 2

= Based on sorting
< Alternative 3

= Based on hashing

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 29

7

Example

SELECT DISTINCT S.Name, S. Age
FROM Sailor S

< No indices

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

General External Merge Sort

+ Phase 2: Make multiple passes to merge runs
= Pass 1: Produce runs of length B(B-1) pages
= Pass 2: Produce runs of length B(B-1)? pages

= Pass P: Produce runs of length B(B-1)" pages

S EHEREE
_-{ INPUT 2

INPUT B-1

Disk B Main memo

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 31

General External Merge Sort: Phase 2
% # buffer pages B =4
54 62 o4 e (5 31 [52 (64 [62] [34] b5l 63 Mmeutiile

m Phase 1
m 4-page runs
—[23
Phase 2
Pass 1
Main Memory
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 32

General External Merge Sort: Phase 2 5:%
< # buffer pages B=4
4 62 4 o1l [5g 4] (52 (64 [e2 [34] sl 53 nputfie

Phase 1
[3.4]
—[23
& [l Phase 2
Pass 1

Main Memory

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 33

General External Merge Sort: Phase 2 % Y

<+ # buffer pages B =4
4 62 4 o1 [5¢ 4 (52 (64 [[34] gl 63 nputfie

m Phase 1
m m 4-page runs
23]
—»lzg
| Phase 2
Pass 1
Main Memory
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 34

General External Merge Sort: Phase 2 % -
% # buffer pages B =4
54 62 o4 e (5 31 [52 (64 [62] [34] b5l 63 Mmeutiile

m m Phase 1

m m 4-page runs

23| —>[34

(2.3
Phase 2
Pass 1

Main Memory
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 35

General External Merge Sort: Phase 2 5:‘::2
< # buffer pages B=4
4 62 4 o1l [5g 4] (52 (64 [e2 [34] sl 53 nputfie

Phase 1
—>[34]
(23
& | Phase 2
Pass 1
"]
Main Memory

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 36

General External Merge Sort: Phase 2 % Y

<+ # buffer pages B =4
4 62 4 o1 [5¢ 4 (52 (64 [[34] gl 63 nputfie

Phase 1
m 4-page runs
O Phase 2
Pass 1
Main Memory
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 37

General External Merge Sort: Phase 2

% # buffer pages B =4
54 62 o4 e (5 31 [52 (64 [62] [34] b5l 63 Mmeutiile

m m Phase 1

m m 4-page runs

23| —>[34

(2.3
Phase 2
Pass 1

Main Memory
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 38

General External Merge Sort: Phase 2 5:‘::2
< # buffer pages B=4
4 62 4 o1l [5g 4] (52 (64 [e2 [34] sl 53 nputfie

Phase 1
—>[34]
(23
& 3 Phase 2
Pass 1
"]
Main Memory

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 39

General External Merge Sort: Phase 2 % Y

<+ # buffer pages B =4
4 62 4 o1 [5¢ 4 (52 (64 [[34] gl 63 nputfie

Phase 1
m 4-page runs
3 Phase 2
Pass 1
Main Memory
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 40

General External Merge Sort: Phase 2

% # buffer pages B =4
54 62 o4 e (5 31 [52 (64 [62] [34] b5l 63 Mmeutiile

m m Phase 1

m m 4-page runs

[2.3] —>[34

(2.3
Phase 2
Pass 1

Main Memory
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 41

General External Merge Sort: Phase 2 5:‘::2
< # buffer pages B=4
4 62 4 o1l [5g 4] (52 (64 [e2 [34] sl 53 nputfie

Phase 1
—>[34]
(23
E 3 Phase 2
Pass 1
(2
Main Memory

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 42

General External Merge Sort: Phase 2 % Y

<+ # buffer pages B =4
4 62 4 o1 [5¢ 4 (52 (64 [[34] gl 63 nputfie

A}
Phase 1

% 4-page runs

[23]

3 Phase 2
Pass 1
]
Main Memory

Database Management Systems 3ed

, R. Ramakrishnan and Johannes Gehrke

Modifications to External Sorting %:O |

< Phase 1
= Project out unwanted columns
= Still produce runs of length B (or 2B) pages

= But tuples in runs are smaller than input tuples (so
smaller runs)

< Phase 2

= Eliminate duplicates during merge
= Smaller runs

« Exercise: Calculate I/O cost assuming certain
size of projection columns and certain
distributionof duplicates

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

7

Evaluation Alternatives

< Alternative 1

= Using Indices
< Alternative 2

= Based on sorting
% Alternative 3

= Based on hashing

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Projection Based on Hashing

% Assume relation does not fit in memory
% Phase 1

= Divide relation into partitions

= No duplicate elimination yet!

Original
Relation OUTPUT Partitions
— 1
INPUT 2
—[] tubeifon ves
h B-1
Disk B main memory buffers Disk

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Phase 1: Analysis

< Number of data pages = N
= Assume all attributes are projected out

% Cost of reading/writing disk page = D

< Number of Partitions = B-1
« Length of each partition = N/(B-1)

% Costof Phase1= 2*D*N

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

Two Cases for Each Partition

% Case 1
= Partitions fits in memory
< Case 2

= Partition does not fit in memory

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke

773

Case 1: Partition Fits in Memory % +
Use h2 <> h1!

Partitions . L.
of R Dupl Free Partition
Hash table for partition
Ri
oo og - O
DD h2
v
O [["] mput buffer
for Si
- I —
Disk B main memory buffers Disk

< Ris number of pages in result
+ After eliminating duplicates

% Cost=D * (N + R)

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 49

Case 2: Partition Doesn't fit in Memory "‘ 2

% Recursively apply Phase 1 algorithm on the partition!
= Use hash function h2 <> h1!

< Analysis
= Size of each partition after P partitioning phases = N/ (B-1)P
= Stop partitioning when : N/ (B-1)" = B-1
= # Partitioning phases = logg ;(N) - 1
= Total cost of Phase 1 =2*D * (logg ,(N) - 1)

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 50

7

< Sort-based approach vs. hash-based approach
= Which one would you choose?
* Why?

Comments on Projection

« Sort-based approach!
= Better handling of skew
= Results in sorted order

Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke 51

