N\

Tree-Structured Indexes

Database Systems, R. i and J. Gehrke

\Range Searches

« ““Find all students with gpa > 3.0”

- If data entries are sorted, do binary search to find
first such student, then scan to find others.

< Problem?

Introduction

% As for any index, 3 alternatives for data entries k*:
@ Data record with key value k
@ <k, rid of data record with search key value k>
@ <k, list of rids of data records with search key k>
% Choice is orthogonal to the indexing technique
used to locate data entries k*.
% Tree-structured indexing techniques support
both range searches and equality searches.
<+ ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

Database Systems, R. and J. Gehrke

\Range Searches

% Simple idea: Create an “index’ file

— What is search cost if each index page has F entries?

1)
K1 k2 ‘ ‘ ‘ ‘ KN H Index File
\
|

“ Page 1 H Page 2 H Page 3 ‘ ‘PageN H Data File

b4 Can do binary search on (smaller) index file!

Database Systems, R. and J. Gehrke

“ Page1 || Pagez |[Pages | [PageN H Data (Entries) File
Database Systems, R. i and]. Gehrke 3
index entr¥

\ISAM Po| K1|Pyq| K2|P, PN Km|Pm
| | | |

% Index file may still be quite large. But we can
apply the idea repeatedly!

Non-leaf
Pages

Pages)) * A
] Overflow -------- >
page Primary pages

D4 Leaf pages contain data entries.
Database Systems, R. ishnan and J. Gehrke 5

\Example ISAM Tree

< Each node can hold 2 entries

— What is search cost if each leaf node can hold L
entries and each index node can hold F entries?

Database Systems, R. and J. Gehrke

\After Inserting 23%, 48*, 41*, 42* ...

Root s

Index In!.l
b

Pages

|
A

Leaf 10‘15*“20 27*‘ 33‘37‘{40‘46 ‘51 55“53"97‘
Pages Y Y
Pages
42% ‘
Database Systems, R. ishnan and J. Gehrke 7

\ Then Deleting 42*

Root ~—a

Index Iﬁ!.l
b

Pages

|
Primary / J,

Leaf 10‘15*”20 27" 33‘37‘{40‘46‘ ‘51 55“63‘97‘
Pages Y N
Overflow 23 ‘
Pages
42* ‘
Database Systems, R and J. Gehrke 8

\ Then Deleting 51*

Root ~—a

Index In!.l
b

Pages

|
A

Leaf 10‘15*“20 27*‘ 33‘37‘{40‘46 ‘
Pages Y Y
Pages
Database Systems, R. ishnan and J. Gehrke 9

\After Deleting 41* and 51*

Root ~—a

Index Iﬁ!.l
b

Pages

|
Primary / J,

Leaf 10"15*”20' 27" 33‘37‘{40‘46 ‘ 55“63“97‘
Pages Y N
Pages

24 Note 51 appears in Index Page but not in Leaf pages!

Database Systems, R. and J. Gehrke 10

B+ Tree: The Most Widely Used Index

% Insert/delete at log . N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

% Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

% Supports equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
(“Sequence set")
Database Systems, R ishnan and J. Gehrke 11

\Example B+ Tree

% Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

< Search for 5%, 15*, all data entries >=24* ...

‘ 2+ ‘ 3+ ‘ 5* ‘ 7 ‘ ‘ 14" 16“ ‘ ‘ 19" 20* 22“ ‘ZA“ 27“29" ‘33"311"35"39“

D4 Based on the search for 15%, we know it is not in the tree!
Database Systems, R. and J. Gehrke 12

\B+—tree Search Performance

« Assume leaf pages can hold L data entries
< Assume B+-tree has order d
< Assume the tree has to index N data entries

% What is the best-case search performance
(measured in number of 1/0s)?

« What is the worst-case search performance

Database Systems, R. i and J. Gehrke 13

\B+ Trees in Practice

% Typical order: 100. Typical fill-factor: 67%.
- average fanout = 133
« Typical capacities:
- Height 4: 133* = 312,900,700 records
- Height 3:133%= 2,352,637 records
% Can often hold top levels in buffer pool:
- Level1= 1page = 8Kbytes
- Level2= 133 pages= 1Mbyte
- Level 3 =17,689 pages = 133 MBytes

Database Systems, R. and J. Gehrke 14

\Inserting 23%

‘2« ‘ E ‘ 5 ‘ 7 ‘ ‘111“16" ‘ ‘ ‘ 19*‘ zo*‘ zz*‘za*‘ ‘24"27"29*‘ ‘ 33+] 34+ |38+] 39*

Database Systems, R. i and J. Gehrke 15

\Inserting 8*...

Root

‘z' ‘ El ‘ 5 ‘7* ‘ ‘w‘ 15" ‘ H 19" zo*‘ zz*‘ H 24" 27"29" ‘ 33+ 34+| 38+ [39+

Database Systems, R. and J. Gehrke 16

\Inserting 8% ...

Entry to be inserted in parent node
(Note that 5 is copied up and
continues to appear in the leaf)

|

Root

B ‘ I3 ‘ E" ‘ ‘14*‘ 16'1 ‘ ‘ 19" 20"22" Hzr‘ 27"29" ‘ 33+[34+ |38+] 39+

Entry to be inserted in parent node
(Note that 17 is pushed up and only
appears once in the index. Contrast
this with leaf split)

\Insertin g 8*...
HI\

Root

Database Systems, R ishnan and J. Gehrke 17

2 ‘ E ‘ ‘ ‘ ‘5* ‘ 7 ‘ 8 ‘ ‘14" 16“ ‘ H 19" zu" zz" H 2A“ 27"29*‘ ‘ 33+] 34+| 38+ 30"
Database Systems, R. and J. Gehrke 18

\After Inserting 8*

Note how tree grew

\Inserting 8*...

Root

‘z' ‘ 3 ‘ E ‘ 7 ‘ ‘w‘m" ‘ H 19*‘ 20" zz*‘ H 24*‘ 27*‘29" Hsa«‘sm[am‘zg"

% In this example, could have “redistributed” to sibling
instead of splitting

< Not usually done in practice (Why?)

Database Systems, R. and J. Gehrke 20

> ‘ 3" ‘ ‘ ‘5' ‘ ™ ‘ 8 ‘ ‘w‘ 16" ‘ H ‘zo*‘ zz*‘ H 24"27"29" ‘ 33+ 34+| 38+ [39+

Database Systems, R. and J. Gehrke 22

\After Deleting 20*

Root

Redistribution: note how
entry is copied up

Root
by one level!
17
5 || 18 24 || 30
e ‘5« ‘ 7 ‘ 8 ‘ ‘14" 16“ ‘ H 19*‘ 20"22" sz‘ 27*} 29" ‘ 33+] 34+|38+] 39*
Database Systems, R. ishnan and J. Gehrke 19
Deleting 19 ...
Root
17
5 || 18 24 || 30
e ‘5« ‘ 7 ‘ 8 ‘ ‘14" 16“ ‘ H 19*‘ 20"22" sz‘ 27*} 29" ‘ 33] 34+| 38+] 39*
Database Systems, R. ishnan and J. Gehrke 21
2* ‘ 3* ‘ ‘ ‘ ‘ 5% ‘ 7™ ‘ 8* ‘ ‘ 14“ 16" ‘ H ‘ ‘22“ H 24" 27'} 29“ ‘ 33*| 34* | 38* [39*
Database Systems, R. ishnan and J. Gehrke 23

A A a A A A A
2 ‘ 3*‘ ‘ ‘ ‘5* ‘ 7 ‘ 8 ‘ ‘14" 16“ ‘ H 22" 24" ‘ H 27"29" ‘ ‘ 33+] 34+| 38+ 30"

Database Systems, R. and J. Gehrke 2

\Deleting 24% ...

2=]

Database Systems, R. and J. Gehrke 26

Root
17
5 || 1 27| 30
e ‘5« ‘ 7 ‘ e*‘ ‘14" 16“ ‘ H zz*‘ 24" ‘ Hzr‘ 29*} ‘ ‘ 33+[34+ |38+] 39"
Database Systems, R. ishnan and . Gehrke 2
Deleting 24* ...
Root

Merge: note how
entry is deleted

A A

EEEN

Database Systems, R. i and J. Gehrke 27

\Deleting 24% ...

Merge: note how entry
is pulled down (contrast
with merge of leaf node)

Rm‘

o KA . A A A &
0) 5 I 3

38 ‘ 30" ‘

Database Systems, R. and J. Gehrke 28

\Example of Non-leaf Re-distribution

% During deletion of 24*

+ In contrast to previous example, can re-distribute
entry from left child of root to right child.

Roo(\‘

13|17 || 20

T T el | e el 1 e] oo

Database Systems, R ishnan and J. Gehrke 29

\After Re-distribution

+ Entries are re-distributed by “pushing through’ the
splitting entry in the parent node.

< Suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

Root

KA A KA
(21> T J=1rle] o] T J[ofeef | Jiofa] T Jfeaferies] J[ecfocfosfo
Database Systems, R. and J. Gehrke 30

\Composite Search Keys

+ B+-tree index on (Age, Salary)
% Which queries can you answer efficiently using
a B+-tree?
— Age =20, Salary = 100000
— Age > 20, Salary = 100000
— Age =20, Salary > 100000
— Age > 20, Salary > 100000

Database Systems, R. i and J. Gehrke 31

\Prefix Key Compression

« Important to increase fan-out (Why?)
« Key values in index entries only “direct traffic’;
can often compress them

- E.g., adjacent index entries with search key values
Dannon Yogurt, David Smith and Devarakonda Murthy

- We can abbreviate David Smith to Dav. (The other
keys can be compressed too ...)

% Is this correct?
- Not quite! What if there is a data entry Davey Jones?

- Compressed key should be greater than every entry in left sub-tree
- Insert/delete modified appropriately

Database Systems, R. and J. Gehrke 32

\A Note on “Order’

% Order (d) concept replaced by physical space
criterion in practice (‘at least half-full’).
- Index pages can typically hold many more entries
than leaf pages.

- Variable sized records and search keys mean different
nodes will contain different numbers of entries.

- Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Database Systems, R. i and J. Gehrke 33

\Bulk Loading of a B+ Tree

« If ' we have a large collection of records, and we
want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

< Bulk Loading can be done much more efficiently.

« Initialization: Sort all data entries, insert pointer
to first (leaf) page in a new (root) page.

Root

Sorted pages of data entries; not yet in B+ tree

Database Systems, R. and J. Gehrke 34

Bulk Loading (Contd.)

o [
« Index entries for leaf !

pages always P = P Data entry pages
. . notyet in B+ tree

entered into right-

most index page just

When this fills up, it
splits. (Split may go
up right-most path
to the root.)

% Much faster than
repeated inserts,
especially when one

considers locking!
AREIGE

Data entry pages
not yet in B+ tree

Database Systems,

\Summary of Bulk Loading

« Option 1: multiple inserts.

- Slow.

- Does not give sequential storage of leaves.
% Option 2: Bulk Loading

- Has advantages for concurrency control.

- Fewer I/0s during build.

- Leaves will be stored sequentially (and linked, of
course).

- Can control “fill factor” on pages.

Database Systems, R. and J. Gehrke 36

