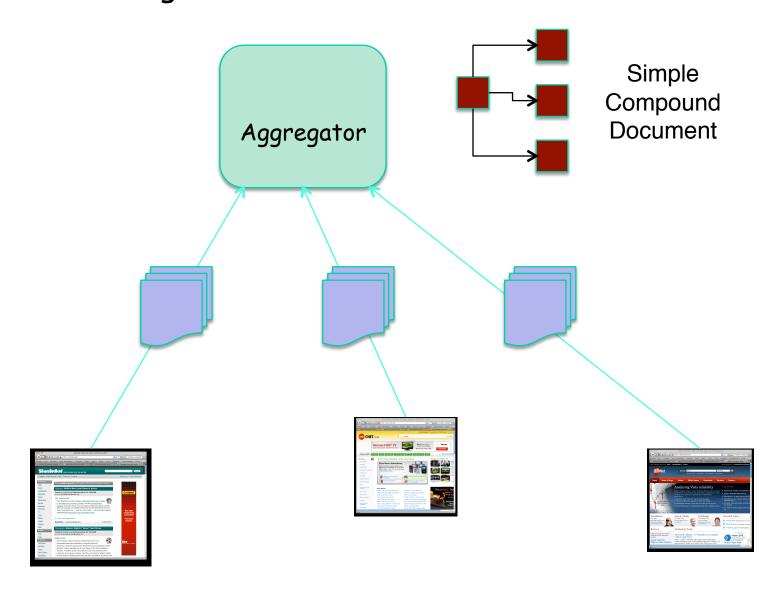
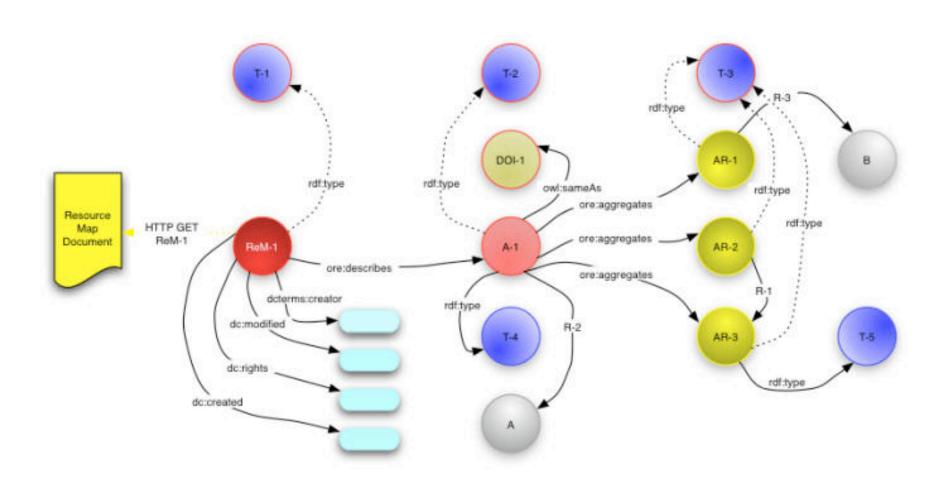
Semantic Web Basics (cont.)

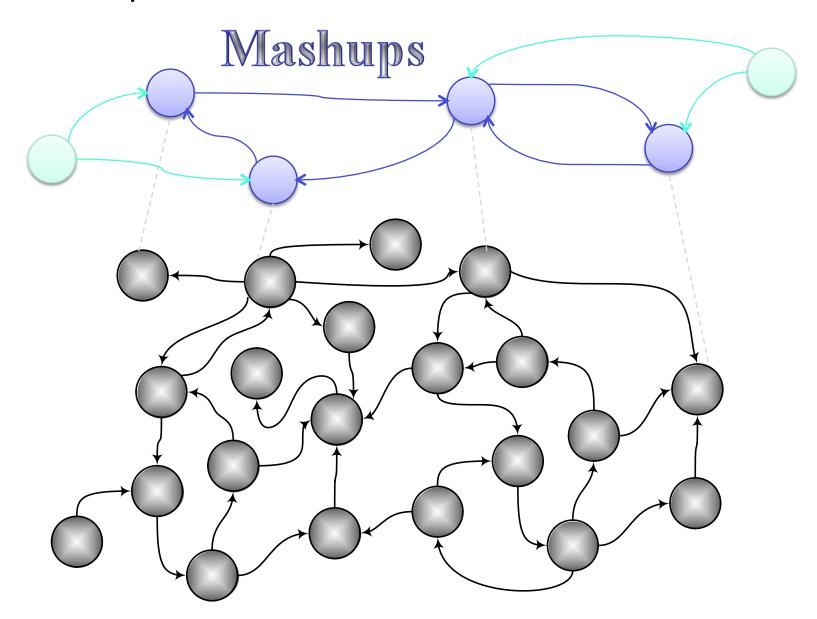
CS 431 - March 26, 2008 Carl Lagoze - Cornell University


Acknowledgements for various slides and ideas

- Ian Horrocks (Manchester U.K.)
- Eric Miller (W3C)
- Dieter Fensel (Berlin)
- Volker Haarslev (Montreal)

We started with the Presentation Web


Atom/RSS gave us data extraction from the Web


But we want to do more - Beyond just web pages

We want to do more - Compound/Complex Relationships

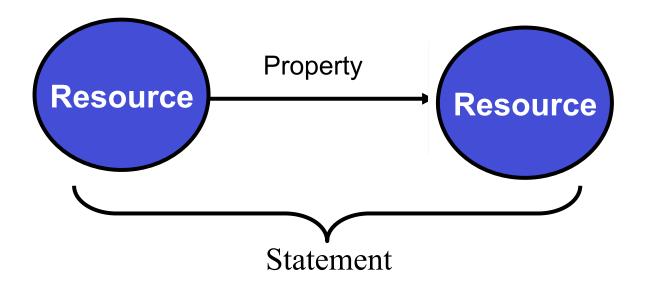
Motivating the problem: Integrating Web Resources in new ways

Standards/mechanisms for doing this

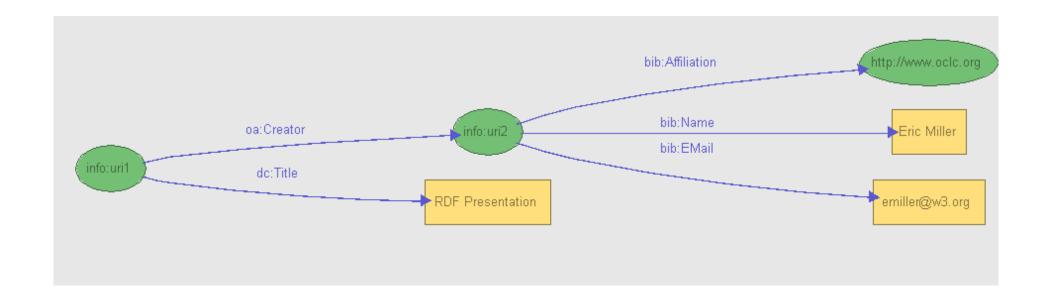
- Stuff we've learned so far
 - URIs keys for unique identity and joining distributed information
 - XML Markup for serialization of knowledge bases
 - Namespaces URIs for vocabulary terms
- Stuff we'll learn from here
 - RDF basic model for representing knowledge via binary relationships
 - Ontologies definitions of vocabulary terms and their relationships
 - OWL RDF-based model for expressing Ontologies
 - Description logic Formal way to represent ontologies and reason with them

Assertions are statements

- Resource1 "is about" Resource2
- · Resource1 "annotates" Resource2
- Resource1 "illustrates" Resource2
- Organization1 "owns" Resource2
- Person1 "recommends" Resource2
- RDF is a model for making assertions
 - Subject → Predicate → Object

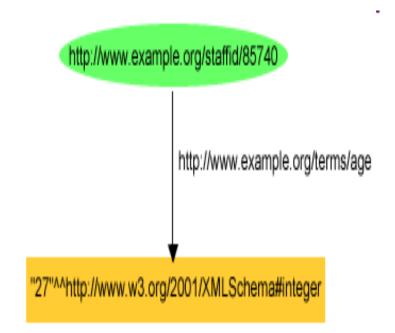

RDF Data Model

- Directed Graph expressing typed binary relations between typed resources
- Relations are:
 - P(S,O) or (:s:p:o)
- Primitives
 - resource
 - property
 - literal
 - statement
- Other constructs
 - container
 - reification
 - collection
- URI's for everything except literals
 - "bnodes" are a special case, but more about that later
- Common serialization is RDF/XML


Why URIS

- Purpose of RDF is integrating information from multiple sources
 - Existing web
 - Introduced entities (people, organizations, taxonomies)
- URI's form basis of joins of graph
- Instance data combines into larger graphs
- Inferences can be made based on:
 - RDF primitives
 - Ontology definitions
 - RDFs
 - · OWL

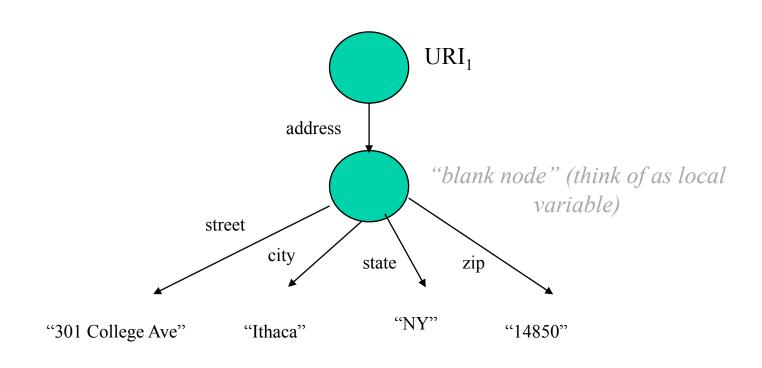
RDF Model Primitives



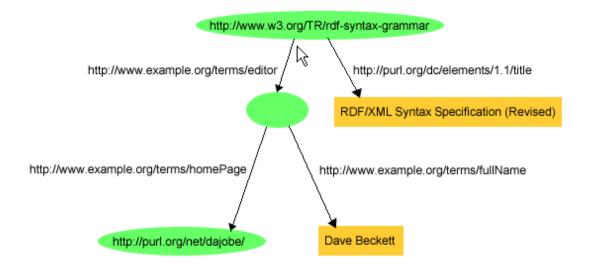
RDF Model Example #2

RDF/XML Syntax Example #2

```
<?xml version="1.0"?>
<rdf:RDF xmIns:qss="http://www.w3.org/2001/11/IsaViz/graphstylesheets#"</pre>
xmlns:oa="http://agents.org/elements#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLS@hema#" xmlns:bib="http://www.bib.org/persons#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:dc="http://purl.org/dc/elements/1.0/"
xml:base="file:/C:/lsaViz/tmp/tmp41406.rdf">
 <rdf:Description rdf:about="info:uri2">
  <br/>http://www.oclc.org"/>
  <br/>bib:EMail>emiller@w3.org</bib:EMail>
  <br/>bib:Name>Eric Miller</bib:Name>
 </rdf:Description>
 <rdf:Description rdf:about="info:uri1">
  <oa:Creator rdf:resource="info:uri2"/>
  <dc:Title>RDF Presentation</dc:Title>
 </rdf:Description>
</rdf:RDF>
```



Typed Literals

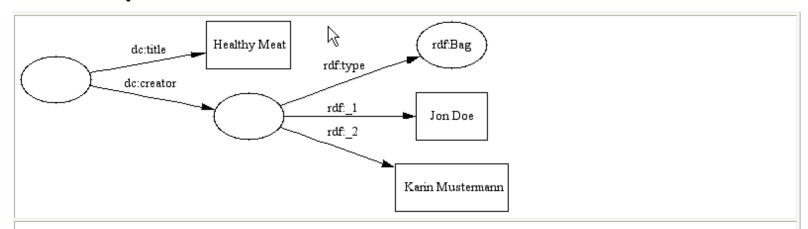
```
</p
```


Beyond binary relations

- Note mapping of RDF statements to binary relations that could be stored in a database:
 - (:s:p:o) maps to P(S,O) e.g., Title(R, "War & Peace")
- But the world is more complex and statements are arbitrary n-tuples
 - Carl Lagoze has his office at 301 College Ave., Ithaca, NY 14850
 - ("Carl Lagoze" "hasOffice" "301 College Ave, Ithaca, NY 14850")
 - ("Carl Lagoze" "address" "301 College Ave" "Ithaca" "NY" "14850")

Expressing n-ary relations with blank nodes

Another n-ary relation example

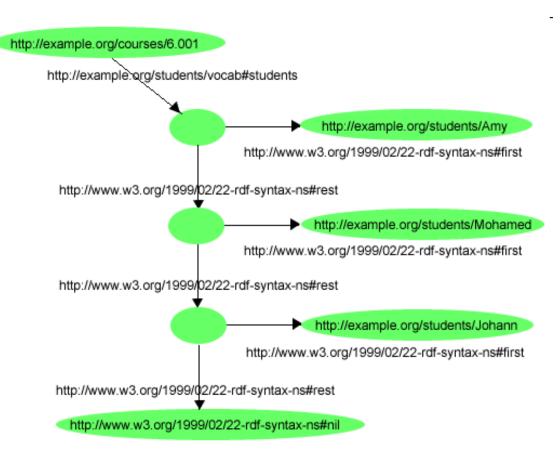

RDF Containers

- Permit the aggregation of several values for a property
- Express multiple aggregation semantics
 - unordered
 - sequential or priority order
 - alternative

RDF Containers

- Bag
 - unordered grouping
- Sequence
 - ordered grouping
- Alternatives
 - alternate values
 - · need to choose
 - at least one value
 - first value is default or preferred value

Expressing Container Primitives in Binary Relations


Jon Doe and Karin Mustermann joint their forces to create a gadget with title Healthy Meat

RDF Collections

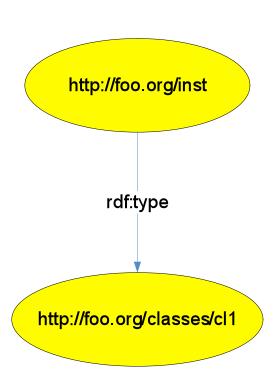
- Containers are not closed
 - open world assumption in all of them
- Collections use lisp-like primitives (first, rest, nil) to express a close list.

RDF Collections

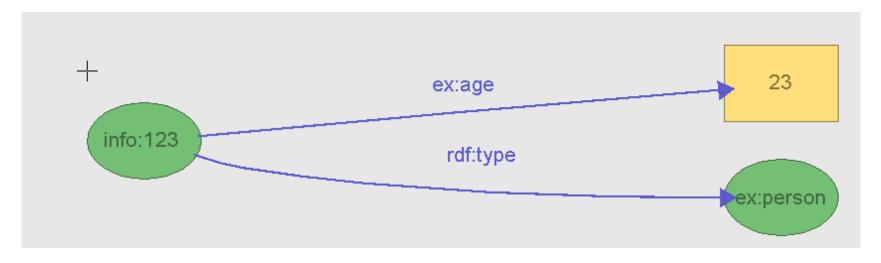
The students in course 6.001 are Amy, Mohamed, and Johann

Looking behind the curtain: RDF Meta-model

RDF Meta-Model provides base level for inferences


- Given a set of facts...
- Derive additional facts
- Some facts
 - Sam has a Prius
 - A Prius is a car
 - A Car is a type of vehicle
 - Sam has a bicycle
 - A bicycle is a type of vehicle
- Inference by subsumption: Sam has two vehicles
- Inference by human judgment: Sam is an environmentalist.

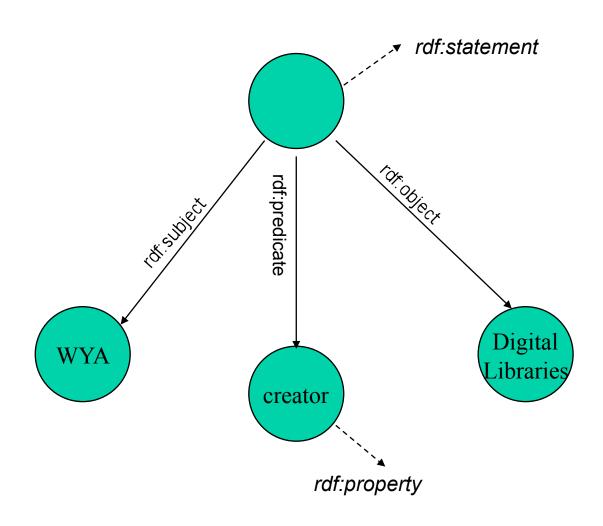
RDF meta-model basic elements


- All defined in rdf namespace
 - http://www.w3.org/1999/02/22-rdf-syntax-ns#
- Types (or classes)
 - rdf:Resource everything that can be identified (with a URI)
 - rdf:Property specialization of a resource expressing a binary relation between two resources
 - rdf:statement a triple with properties rdf:subject,
 rdf:predicate, rdf:object
- Properties
 - rdf:type subject is an instance of that category or class defined by the value
 - rdf:subject, rdf:predicate, rdf:object relate elements of statement tuple to a resource of type statement.

Use of rdf:type

- "Resource named http://foo.org/inst is member of class http://foo.org/classes/ cl1"
- http://foo.org/inst rdf:type http://foo.org/classes/cl1

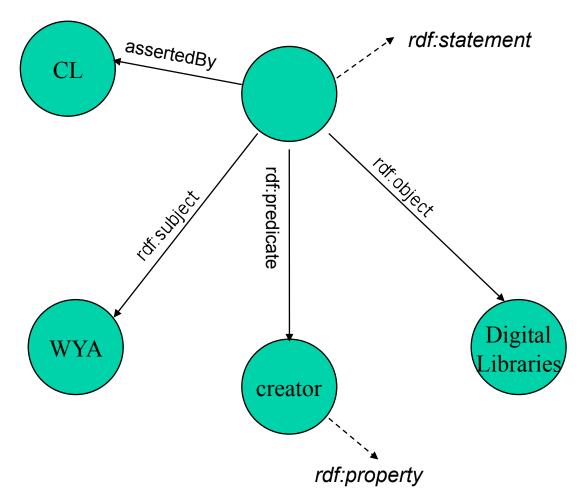
Typing the Resources in Statements




```
<?xml version="1.0" ?>
- <rdf:RDF xmlns:gss="http://www.w3.org/2001/11/IsaViz/graphstylesheets#"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
    xmlns:rdfs="http://example.org/2000/01/rdf-schema#"
    xmlns:rdfs="http://example.org/10/rdf-schema#"
    xmlns:rdfs="http://example.org/2000/01/rdf-s
```

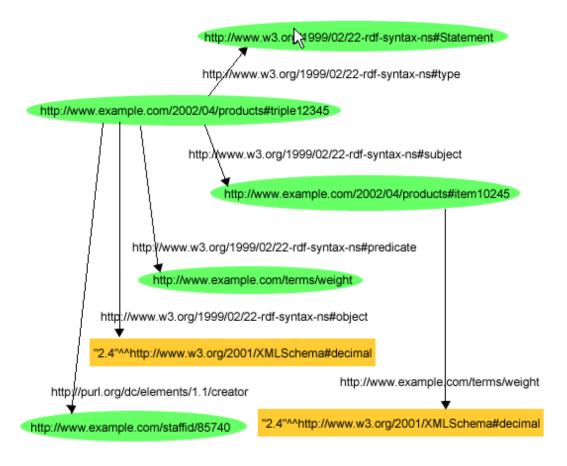
Formalizing a statement

- An RDF statement is a triple consisting of:
 - subject → rdf:type resource
 - property → rdf:type property
 - object → rdf:type resource | literal
 - Examples
 - http://purl.org/dc/elements/creator
 - "Carl Lagoze"
 - http://purl.org/dc/elements/creator
 - <mailto:lagoze@cs.cornell>
- Expressible as:
 - triple (ns1:s ns2:p ns3:o)


RDF statements and basic types

Simple type inferencing

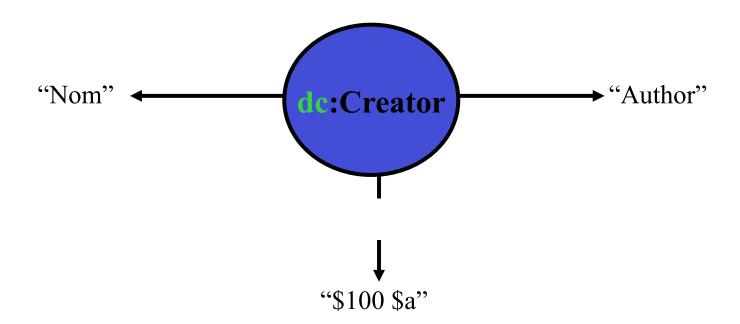
explicit triple	Allows inference
	(:s rdf:type rdf:Resource) (:p rdf:type rdf:Property) (:o rdf:type rdf:Resource)


Reification - Statements about statements

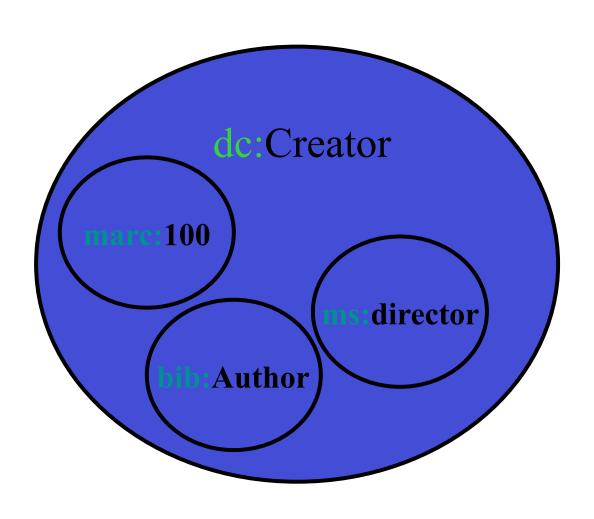
"CL says 'WYA wrote Digital Libraries"

Reification Structure

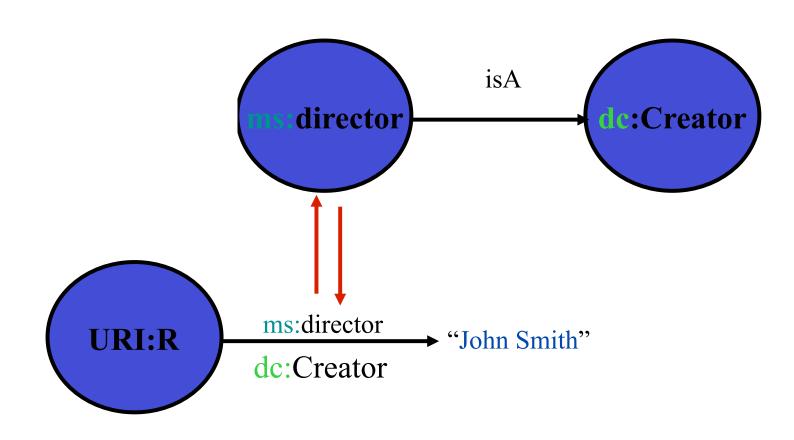
Staff member 85740 said the weight of item 10245 is 2.4 units



Reification XML


```
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
           xmlns:dc="http://purl.org/dc/elements/1.1/"
           xmlns:exterms="http://www.example.com/terms/"
           xml:base="http://www.example.com/2002/04/products">
 <rdf:Description rdf:ID="item10245">
     <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
 </rdf:Description>
 <rdf:Statement rdf:about="#triple12345">
     <rdf:subject rdf:resource="http://www.example.com/2002/04/products#item10245"/>
     <rdf:predicate rdf:resource="http://www.example.com/terms/weight"/>
     <rdf:object rdf:datatype="&xsd;decimal">2.4</rdf:object>
     <dc:creator rdf:resource="http://www.example.com/staffid/85740"/>
 </rdf:Statement>
</rdf:RDF>
```

Why Schema (1)?


• Enables communities to share machine readable tokens and locally define human readable labels.

Why Schema (2)? Relationships among vocabularies

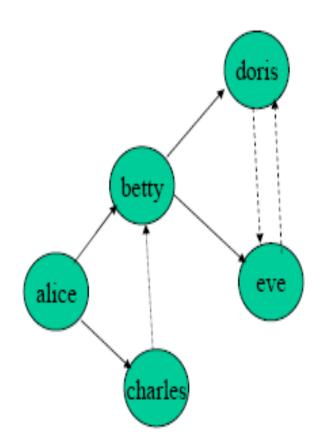
Why Schema(3)? Relationships among vocabulary elements

RDF Schemas

- Declaration of vocabularies
 - classes, properties, and structures defined by a particular community
 - relationship of properties to classes
- Provides substructure for inferences based on existing triples
- NOT prescriptive, but descriptive
- · Schema language is an expression of basic RDF model
 - uses meta-model constructs
 - schema are "legal" rdf graphs and can be expressed in RDF/ XML syntax

RDFs Namespace

- · Class-related
 - rdfs:Class, rdfs:subClassOf
- · Property-related
 - rdfs:subPropertyOf, rdfs:domain, rdfs:range


RDF Schema: Specializing Properties

- rdfs:subPropertyOf allows specialization of relations
 - E.g., the property "father" is a subPropertyOf the property parent
- subProperty semantics

If M contains	Then add
(:s rdfs:subPropertyOf :0)	(:s rdf:type rdf:Property) (:o rdf:type rdf:Property)
(:s :p :o) (:p rdfs:subPropertyOf :q)	(:s :q :o)
(:p rdfs:subPropertyOf :q) (:q rdfs:subPropertyOf :r)	(:p rdfs:subPropertyOf :r)

Inferences from Property Relationships

5.7


```
(:alice :has-child :betty)
(:alice :has-child :charles)
(:betty :has-child :doris)
(:betty :has-child :eve)
(:charles : has-sibling :betty)
(:doris :has-sister :eve)
(:eve :has-sister :doris)
```

Sub-Property Semantics

```
(:has-sister rdfs:subPropertyOf :has-sibling)
(:has-brother rdfs:subPropertyOf :has-sibling)
(:has-child rdfs:subPropertyOf :has-descendant)
```

Using the intended semantics, we can infer:

```
(:alice :has-descendant :betty)
(:alice :has-descendant :charles)
(:alice :has-descendant :doris)
(:alice :has-descendant :eve)
```

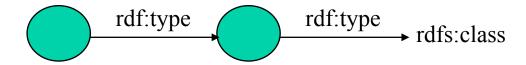
Property-based semantics

- Provide basis for type inference from properties
- Not restrictive like xml schema constraints
- rdfs:domain
 - classes of resources that have a specific property
- rdfs:range
 - classes of resources that may be the value of a specific property

If M contains	Then add
(:s :p :o) (:p rdfs:domain :t)	(:s rdf:type :t)
(:s :p :c' (:p rdfs: range :t)	(:o rdf:type :t)

Inferences from Constraints

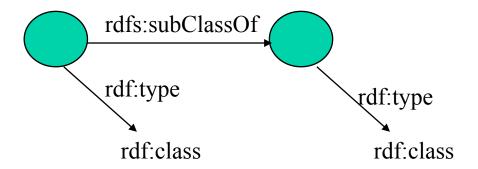
```
(:has-child rdfs:domain parent)
(:has-child rdfs:range person)
(:has-sibling rdfs:domain person)
(:has-brother rdfs:range :male-person)
(:has-sister rdfs:range :female-person)
```


Using the intended semantics, we can infer:

```
(:alice rdf:type parent)
(:betty rdf:type parent)

:eve    rdf:type femal-person)
(:charles rdf:type :person)
```

Class Declaration


- rdfs:Class
 - Resources denoting a set of resources; range of rdf:type

ex:MotorVehicle rdf:type rdfs:Class exthings:companyCar rdf:type ex:MotorVehicle

Class Hierarchy

- rdfs:subClassOf
 - Create class hierarchy

ex:MotorVehicle rdf:type rdfs:Class

ex:SUV rdf:type rdfs:Class

ex:SUV rdf:subClassOf ex:MotorVehicle

exthings:companyCar rdf:type ex:SUV

Sub-Class Inferencing

If M contains	Then add
(:s rdf:type :o)	(:o rdf:type rdfs:Class)
(:s rdf:type :o) (:o rdfs:subClassOf :c)	(:s rdf:type :c)
(:s rdfs:subClassOf :o) (:o rdfs:subClassOf :c)	(:s rdfs:subClassOf :c)
(:s rdfs:subClassOf :o)	(:s rdf:type rdfs:Class) (:o rdf:type rdfs:Class)
(:s rdf:type rdfs:Class)	(:s rdfs:subClassOf rdf:Resource)

Sub-class Inferencing Example

```
(:parent rdfs:subClassOf :person)
(:male-person rdfs:subClassOf :person)
(:female-person rdfs:subClassOf :person)
(:mother rdfs:subClassOf :parent)
(:mother rdfs:subClassOf :female-person)
```

• Using the intended semantics, we can infer:

```
(:betty rdf:type person)
```

Jena Toolkit

- Robust tools for building and manipulating RDF models
 - HP Labs Bristol
 - Capabilities
 - Model construction
 - XML and N3 parsing
 - Model persistence (DB foundation)
 - · Model querying
 - Ontology building
 - · Inferencing
- http://www.hpl.hp.com/semweb/jena2.htm

IsaViz

- Visualizing and constructing RDF models
- http://www.w3.org/2001/11/IsaViz/