
Semantic Web - OWL

CS 431 – April 5, 2006 Carl Lagoze – Cornell University

Acknowledgements for various slides and ideas

- · Ian Horrocks (Manchester U.K.)
- · Eric Miller (W3C)
- · Dieter Fensel (Berlin)
- Volker Haarslev (Montreal)

Components of the Semantic Web

Problems with RDF/RDFs Non-standard, overly "liberal" semantics

- · No distinction between class and instances
 - <Species, type, Class>
 - <Lion, type, Species>
 - <Leo, type, Lion>
- Properties themselves can have properties
 - <hasDaughter, subPropertyOf, hasChild>
 - <hasDaugnter, type, Property>
- No distinction between language constructors and ontology vocabulary, so constructors can be applied to themselves/each other
 - <type, range, Class>
 - < Property, type, Class>
 - <type, subPropertyOf, subClassOf>
- · No known reasoners for these non-standard semantics

Problems with RDF/RDFs Weaknesses in expressivity

- · No localized domain and range constraints
 - Can't say the range of hasChild is person in context of persons and elephants in context of elephants
- · No existence/cardinality constraints
 - Can't say that all instances of persons have a mother that is also a person
- Can't say that persons have exactly two biological parents
- · No transitive, inverse or symmetric properties
 - Can't say isPartOf is a transitive property
 - Can't say isPartOf is inverse of hasPart
 - Can't say touches is symmetric

So, we need a more expressive and well-grounded ontology language....

What is an Ontology?

- A formal specification of conceptualization shared in a community
- Vocabulary for defining a set of things that exist in a world view
- Formalization allows communication across application systems and extension
- Parallel concepts in other areas:
 - Domains: database theory
 - Types: Al
 - Classes: OO systems
 - Types/Sorts: Logic

XML and RDF are ontologically

- No standard vocabulary just primitives
 - Resource, Class, Property, Statement, etc.
- · Compare to classic first order logic
 - Conjunction, disjunction, implication, existential, universal quantifier

Components of an Ontology

- · Vocabulary (concepts)
- Structure (attributes of concepts and hierarchy)
- Relationships between concepts
- · Logical characteristics of relationships
 - Domain and range restrictions
 - Properties of relations (symmetry, transitivity)
 - Cardinality of relations
 - etc.

Wordnet

- · On-line lexical reference system, domainindependent
- >100,000 word meanings organized in a taxonomy with semantic relationships
 - Synonymy, meronymy, hyponymy, hypernymy
- · Useful for text retrieval, etc.
- http://www.cogsci.princeton.edu/~wn/online/

CYC

- · Effort in AI community to accommodate all of human knowledge!!!
- · Formalizes concepts with logical axioms specifying constraints on objects and classes
- Associated reasoning tools
- · Contents are proprietary but there is OpenCyc
 - http://www.opencyc.org/

So why re-invent ontologies for the

- Not re-invention
 - Same underlying formalisms (frames, slots, description logic)
- But new factors
 - Massive scale
 - Tractability
 - Knowledge expressiveness must be limited or reasoning must be incomplete
 - Lack of central control
 - · Need for federation
 - · Inconsistency, lies, re-interpretations, duplications
 - · New facts appear and modify constantly
 - Open world vs. Close world assumptions
 - Contrast to most reasoning systems that assume anything absent from knowledge base is not true
 - · Need to maintain monotonicity with tolerance for contradictions
 - Need to build on existing standards
 - · URI, XML, RDF

Web Ontology Language (OWL)

- W3C Web Ontology Working Group (WebOnt)
- Follow on to DAML, OIL efforts
- W3C Recommendation
- · Vocabulary extension of RDF

Species of OWL

- · OWL Lite
 - Good for classification hierarchies with simple constraints (e.g., thesauri)
- Reasoning is computational simple and efficient
- OWL DL
 - Computationally complete and decidable (computation in finite time)
 - Correspondence to description logics (decidable fragment of first-order logic)
- OWL Full
 - Maximum expressiveness
 - No computational guarantees (probably never will be)
- · Each language is extension of simpler predecessor

Relationship between OWL and RDF(s)

- · OWL Full is extension of RDF
- · OWL Lite and DL extensions of restricted view of RDF
- · Every OWL document is an RDF document
- Every RDF document is an OWL Full document
- Only some RDF documents are OWL Lite or OWL DC
- Constraining an RDF document to be OWL Lite or DL
 - Every individual must have class membership (at least owl:thing)
 - URIs for classes, properties, and individuals must be mutually disjoint.

Description Logics

- Fragment of first-order logic designed for logical representation of object-oriented formalisms
 - frames/classes/concepts
 - · sets of objects
 - roles/properties
 - · binary relations on objects
 - individuals
- Representation as a collection of statements, with unary and binary predicates that stand for concepts and roles, from which deductions can be made
- · High expressivity with decidability and completeness
 - Decidable fragment of FOL

Description Logics Primitives

- · Atomic Concept
 - Human
- Atomic Role
 - likes
- Conjunction
 - human intersection male
- Disjunction
- nice union rich
- Negation
- not rich
- Existential Restriction
 - exists has-child.Human

- Value Restriction
 - for-all has-child.Blond
- · Number Restriction
 - ≥ 2 has-wheels
- · Inverse Role
 - has-child, has-parent
- · Transitive role
 - has-child

Description Logic - Tboxes

- · Terminological knowledge
- · Concept Definitions
 - Father is conjunction of Man and has-child. Human
- · Axioms
 - motorcycle subset-of vehicle
 - has-favorite.Brewery subrelation-of drinks.Beer

Description Logics: Aboxes

- Assertional knowledge
- Concept assertions
 - John is-a Man
- · Role assertions
 - has-child(John, Bill)

Description Logics: Basic Inferencing

- Subsumption
 - Is C1 subclass-of C2
 - Compute taxonomy
- Consistency
 - Can C have any individuals

Namespaces and OWL

```
xrdf:RDF
xmins ="http://www.w3.org/TB/2004/REC-owl-quide-20040210/wine#"
xmins:vin ="http://www.w3.org/TB/2004/REC-owl-quide-20040210/wine#"
xminses = "http://www.w3.org/TB/2004/REC-owl-quide-20040210/wine#"
xmins:food="http://www.w3.org/TB/2004/REC-owl-quide-20040210/wine#"
xmins:rood="http://www.w3.org/TB/2004/REC-owl-quide-20040210/food#"
xmins:vid ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmins:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmins:xsd ="http://www.w3.org/2001/XMLSchema#">xmins:xsd = "http://www.w3.org/2001/XMLSchema#">xmins:xsd = "http://www.w3.org/2001/XMLSchema#">xmins:xxd = "http://www.w3.org/2001/XMLSchema#">xmins:xxd = "http://www.w3.org/2001/XMLSchema#">
```

OWL Class Definition

Why owl:class vs. rdfs:class

- Rdfs:class is "class of all classes"
- In DL class can not be treated as individuals (undecidable)
- Thus owl:class, which is expressed as rdfs:subclass of rdfs:class
 - No problem for standard rdf processors since an owl:class "is a" rdfs:class
- Note: there are other times you want to treat class of individuals
 - Class drinkable liquids has instances wine, beer,
 - Class wine has instances merlot, chardonnay, zinfandel, ...

OWL class building operations

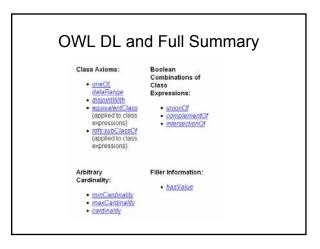
- · disjointWith
 - No vegetarians are carnivores
- sameClassAs (equivalence)
- · Enumerations (on instances)
 - The Ivy League is Cornell, Harvard, Yale,
 - Boolean set semantics (on classes)
 - Union (logical disjunction)
 - · Class parent is union of mother, father
 - Intersection (logical conjunction of class with properties)
 - Class WhiteWine is conjunction of things of class wine and have property white
 - complimentOf (logical negation)
 - · Class vegetarian is disjunct of class carnivore

OWL Properties Two types ObjectProperty - relations between instances of classes DatatypeProperty - relates an instance to an rdfs:Literal or XML Schema datatype (Both rdfs:subClassOf rdf:Property) Owl:DatatypeProperty rdf:ID="name"> <rdfs:domain rdf:resource= "http://www.w3.org/2001/XMLSchema/string"/> /owl:DatatypeProperty rdf:ID="activity"> <rdfs:range rdf:resource="Person"/> <rdfs:range rdf:resource="Person"/> <rdfs:range rdf:resource="Person"/> <rdfs:range rdf:resource="Person"/> </dfs:range rdf:resource="Person"/> </dfs:range rdf:resource="Person"/> </dfs:range rdf:resource="ActivityArea"/>

OWL property building operations & restrictions

- · Transitive Property
- P(x,y) and $P(y,z) \rightarrow P(x,z)$
- SymmetricProperty
 - -P(x,y) iff P(y,x)
- Functional Property
 - P(x,y) and P(x,z) -> y=z
- inverseOf
- P1(x,y) iff P2(y,x)
- InverseFunctional Property
- P(y,x) and P(z,x) -> y=z
- Cardinality
 - Only 0 or 1 in lite and full

OWL DataTypes


- · Full use of XML schema data type definitions
- · Examples

</owl: ObjectProperty>

- Define a type age that must be a non-negative integer
- Define a type clothing size that is an enumeration "small" "medium" "large"

OWL Instance Creation

 Create individual objects filling in slot/attribute/property definitions

OWL DL vs. OWL-Full

- Same vocabulary
- · OWL DL restrictions
 - Type separation
 - · Class can not also be an individual or property
 - · Property can not also be an individual or class
 - Separation of ObjectProperties and DatatypeProperties

Language Comparison

	DTD	XSD	RDF(S)	OWL
Bounded lists ("X is known to have exactly 5 children")				х
Cardinality constraints (Kleene operators)	х	х		х
Class expressions (unionOf, complementOf)				Х
Data types		х		х
Enumerations	х	х		Х
Equivalence (properties, classes, instances)				x
Formal semantics (model-theoretic & axiomatic)				х
Inheritance			х	х
Inference (transitivity, inverse)				х
Qualified contraints ("all children are of type person"				х
Reification			х	х

Storing and querying RDF-based models

- · Persistent storage implementations
 - Jena 2 http://www.hpl.hp.com/semweb/jena2.htm
 - · Relational databases (mysql , postgres, oracle)
 - Kowari http://www.kowari.org
 - · Mapped files
 - Sesame http://www.openrdf.org/
 - Relational databases (mysql, postgres, oracle)
- Query languages
 - RDQL (Kowari, Jena)
 - SPARQL
 - · W3C working draft
 - http://www.w3.org/TR/rdf-sparql-query/

RDQL-by-example

- RDF source
 - http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-db-3.rdf
- Queries
- http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q1
- http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q2
 http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q3
- http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q4
- http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q5
 http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q6
- http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q7
- http://www.cs.cornell.edu/courses/cs431/2006sp/examples/RDQL/vc-q8

Protégé and RACER – tools for building, manipulating and reasoning over ontologies

- Protégé http://protege.stanford.edu/
 - Use the 3.x version
 - Multiple plug-ins are available
- Protégé OWL plug-in
 - http://protege.stanford.edu/plugins/owl/
- Other semantic web related plug-ins
 - http://protege.cim3.net/cgibin/wiki.pl?ProtegePluginsLibraryByTopic#nid349
- Racer
 - Description Logic based reasoning engine
 - Server-based
 - Integrates with Protégé-OWL