
Stemming
!  Many morphological variations of words

–  inflectional (plurals, tenses)
– derivational (making verbs nouns etc.)

!  In most cases, these have the same or very
similar meanings

!  Stemmers attempt to reduce morphological
variations of words to a common stem
–  usually involves removing suffixes

!  Can be done at indexing time or as part of
query processing (like stopwords)

Stemming

!  Generally a small but significant
improvement in effectiveness
– can be crucial for some languages
– e.g., 5-10% improvement for English, up to

50% in Arabic

Words with the Arabic root ktb

Stemming

!  Two basic types
– Dictionary-based: uses lists of related words
– Algorithmic: uses program to determine related

words
!  Algorithmic stemmers

–  suffix-s: remove ‘s’ endings assuming plural
» e.g., cats ! cat, lakes ! lake, wiis ! wii
» Many false positives: supplies ! supplie, ups ! up
» Some false negatives: mice " mice (should be mouse)

Porter Stemmer

!  Algorithmic stemmer used in IR experiments
since the 70s

!  Consists of a series of rules designed to strip
off the longest possible suffix at each step

!  Effective in TREC
!  Produces stems not words
!  Makes a number of errors and difficult to

modify

Porter Stemmer

!  Example step (1 of 5)

Let’s try it

Let’s try it Porter Stemmer

!  Porter2 stemmer addresses some of these issues
!  Approach has been used with other languages

Krovetz Stemmer

!  Hybrid algorithmic-dictionary-based method
– Word checked in dictionary

»  If present, either left alone or stemmed based on its
manual “exception” entry

»  If not present, word is checked for suffixes that could be
removed

» After removal, dictionary is checked again

!  Produces words not stems
!  Comparable effectiveness
!  Lower false positive rate, somewhat higher

false negative

Stemmer Comparison

Next

!  Phrases
!  Document structure
!  Link analysis

!  We’ll skip “phrases” until the next class.

Document Structure and Markup

!  Some parts of documents are more
important than others

!  Document parser recognizes structure
using markup, such as HTML tags
– Headers, anchor text, bolded text all likely to be

important
– Metadata can also be important
– Links used for link analysis

Example Web Page

Example Web Page Link Analysis

!  Links are a key component of the Web
!  Important for navigation, but also for search

– e.g., Example
website

–  “Example website” is the anchor text
–  “http://example.com” is the destination link
– both are used by search engines

Anchor Text

!  Used as a description of the content of the
destination page
–  i.e., collection of anchor text in all links pointing to

a page used as an additional text field
!  Anchor text tends to be short, descriptive,

and similar to query text
!  Retrieval experiments have shown that

anchor text has significant impact on
effectiveness for some types of queries
–  i.e., more than PageRank

PageRank
!  Billions of web pages, some more

informative than others
!  Links can be viewed as information about

the popularity (authority?) of a web page
– can be used by ranking algorithm

!  Inlink count could be used as simple
measure

!  Link analysis algorithms like PageRank
provide more reliable ratings
–  less susceptible to link spam

Random Surfer Model
!  Browse the Web using the following

algorithm:
– Choose a random number r between 0 and 1
–  If r < !:

»  Go to a random page
–  If r " !:

» Click a link at random on the current page
– Start again

!  PageRank of a page is the probability that
the “random surfer” will be looking at that
page
–  links from popular pages will increase PageRank

of pages they point to

Dangling Links

!  Random jump guarantees that all pages
on the Internet will eventually be reached
–  prevents getting stuck on pages that

» do not have links
» contain only links that no longer point to other

pages
» have links forming a loop

!  Links that point to the first two types of
pages are called dangling links

!  Each web page has a PageRank

PageRank

!  Ignoring the “surprise me” button,
PageRank (PR) of page C = PR(A)/2 + PR(B)/1

!  More generally,

–  where Bu is the set of pages that point to u, and Lv is

the number of outgoing links from page v (not
counting duplicate links)

PageRank
!  Don’t know PageRank values at start
!  Assume equal values (1/3 in this case), then

iterate:
–  first iteration: PR(C) = 0.33/2 + 0.33 = 0.5, PR(A) =

0.33, and PR(B) = 0.17
–  second: PR(C) = 0.33/2 + 0.17 = 0.33, PR(A) =

0.5, PR(B) = 0.17
–  third: PR(C) = 0.42, PR(A) = 0.33, PR(B) = 0.25

!  Converges to PR(C) = 0.4, PR(A) = 0.4, and
PR(B) = 0.2

PageRank

!  Taking random page jump into account, 1/3
chance of going to any page when r < !

!  PR(C) = "/3 + (1 # ") $ (PR(A)/2 + PR(B)/1)
!  More generally,

– where N is the number of pages, " typically 0.15

Rq

