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Least squares: the big idea

Least squares problems are a special sort of minimization problem. Suppose 𝐴 ∈ ℝ𝑚×𝑛 where
𝑚 > 𝑛. In general, we cannot solve the overdetermined system 𝐴𝑥 = 𝑏; the best we can do is
minimize the residual 𝑟 = 𝑏 − 𝐴𝑥. In the least squares problem, we minimize the two norm of
the residual:

Find 𝑥 to minimize ‖𝑟‖2
2 = ⟨𝑟, 𝑟⟩.

This is not the only way to approximately solve the system, but it is attractive for several
reasons:

1. It’s mathematically attractive: the solution of the least squares problem is 𝑥 = 𝐴†𝑏 where
𝐴† is the Moore-Penrose pseudoinverse of 𝐴.

2. There’s a nice picture that goes with it — the least squares solution is the projection of 𝑏
onto the range of 𝐴, and the residual at the least squares solution is orthogonal to the
range of 𝐴.

3. It’s a mathematically reasonable choice in statistical settings when the data vector 𝑏 is
contaminated by Gaussian noise.

Cricket chirps: an example

Did you know that you can estimate the temperature by listening to the rate of chirps? The
data shown in Figure 1 represents measurements of the number of chirps (over 15 seconds) of
a striped ground cricket at different temperatures measured in degrees Farenheit1. The plot

1Data set at https://www.mathbits.com/MathBits/TISection/Statistics2/linearREAL.html
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Figure 1: Cricket measurements and least-squares fit

shows that the two are roughly correlated: the higher the temperature, the faster the crickets
chirp. We can quantify this by attempting to fit a linear model

temperature = 𝛼 ⋅ chirps + 𝛽 + 𝜖

where 𝜖 is an error term. To solve this problem by linear regression, we minimize the residual

𝑟 = 𝑏 − 𝐴𝑥

where
𝑏𝑖 = temperature in experiment 𝑖

𝐴𝑖1 = chirps in experiment 𝑖
𝐴𝑖2 = 1

𝑥 = [𝛼
𝛽]

Julia is capable of solving least squares problems using the backslash operator; that is, if chirps
and temp are column vectors in Julia, we can solve this regression problem as

A = [chirps ones(ndata)]

x = A\temp
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The algorithms underlying that backslash operation will make up most of the next lecture.

In more complex examples, we want to fit a model involving more than two variables. This
still leads to a linear least squares problem, but one in which 𝐴 may have more than one or
two columns. As we will see later in the semester, we also use linear least squares problems as
a building block for more complex fitting procedures, including fitting nonlinear models and
models with more complicated objective functions.

Normal equations

Figure 2: Picture of a linear least squares problem. The vector 𝐴𝑥 is the closest vector in ℛ(𝐴)
to a target vector 𝑏 in the Euclidean norm. Consequently, the residual 𝑟 = 𝑏 − 𝐴𝑥 is
normal (orthogonal) to ℛ(𝐴).

When we minimize the Euclidean norm of 𝑟 = 𝑏 − 𝐴𝑥, we find that 𝑟 is normal to everything
in the range space of 𝐴 (Figure 2):

𝑏 − 𝐴𝑥 ⟂ ℛ(𝐴),

or, equivalently, for all 𝑧 ∈ ℝ𝑛 we have

0 = (𝐴𝑧)𝑇(𝑏 − 𝐴𝑥) = 𝑧𝑇(𝐴𝑇𝑏 − 𝐴𝑇𝐴𝑥).

The statement that the residual is orthogonal to everything in ℛ(𝐴) thus leads to the normal
equations

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏.

To see why this is the right system, suppose 𝑥 satisfies the normal equations and let 𝑦 ∈ ℝ𝑛 be
arbitrary. Using the fact that 𝑟 ⟂ 𝐴𝑦 and the Pythagorean theorem, we have

‖𝑏 − 𝐴(𝑥 + 𝑦)‖2 = ‖𝑟 − 𝐴𝑦‖2 = ‖𝑟‖2 + ‖𝐴𝑦‖2 > 0.

The inequality is strict if 𝐴𝑦 ≠ 0; and if the columns of 𝐴 are linearly independent, 𝐴𝑦 = 0 is
equivalent to 𝑦 = 0.

We can also reach the normal equations by calculus. Define the least squares objective
function:

𝐹(𝑥) = ‖𝐴𝑥 − 𝑏‖2 = (𝐴𝑥 − 𝑏)𝑇(𝐴𝑥 − 𝑏) = 𝑥𝑇𝐴𝑇𝐴𝑥 − 2𝑥𝑇𝐴𝑇𝑏 + 𝑏𝑇𝑏.
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The minimum occurs at a stationary point; that is, for any perturbation 𝛿𝑥 to 𝑥 we have

𝛿𝐹 = 2𝛿𝑥𝑇(𝐴𝑇𝐴𝑥 − 𝐴𝑇𝑏) = 0;

equivalently, ∇𝐹(𝑥) = 2(𝐴𝑇𝐴𝑥 − 𝐴𝑇𝑏) = 0 — the normal equations again!

A family of factorizations

Cholesky

If 𝐴 is full rank, then 𝐴𝑇𝐴 is symmetric and positive definite matrix, and we can compute a
Cholesky factorization of 𝐴𝑇𝐴:

𝐴𝑇𝐴 = 𝑅𝑇𝑅.

The solution to the least squares problem is then

𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 = 𝑅−1𝑅−𝑇𝐴𝑇𝑏,

or, in Julia world

AC = cholesky(A'*A)

x = AC\(A'*b) # Using the factorization object, OR

x = AC.U\(AC.U'\(A'*b))

Economy QR

The Cholesky factor 𝑅 appears in a different setting as well. Let us write 𝐴 = 𝑄𝑅 where
𝑄 = 𝐴𝑅−1; then

𝑄𝑇𝑄 = 𝑅−𝑇𝐴𝑇𝐴𝑅−1 = 𝑅−𝑇𝑅𝑇𝑅𝑅−1 = 𝐼.

That is, 𝑄 is a matrix with orthonormal columns. This “economy QR factorization” can be
computed in several different ways, including one that you have seen before in a different guise
(the Gram-Schmidt process). Julia provides a numerically stable method to compute the QR
factorization via

AC = qr(A)

and we can use the QR factorization directly to solve the least squares problem without forming
𝐴𝑇𝐴 by
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AC = qr(A,0)

x = AC\b # Using the factorization object, OR

x = AC.R\((AC.Q'*b)[1:m])

Full QR

There is an alternate “full” QR decomposition where we write

𝐴 = 𝑄𝑅, where 𝑄 = [𝑄1 𝑄2] ∈ ℝ𝑚×𝑚, 𝑅 = [𝑅1
0 ] ∈ ℝ𝑚×𝑛.

To see how this connects to the least squares problem, recall that the Euclidean norm is
invariant under orthogonal transformations, so

‖𝑟‖2 = ‖𝑄𝑇𝑟‖2 = ∥[𝑄𝑇
1 𝑏

𝑄𝑇
2 𝑏] − [𝑅1

0 ] 𝑥∥
2

= ‖𝑄𝑇
1 𝑏 − 𝑅1𝑥‖2 + ‖𝑄𝑇

2 𝑏‖2.

We can set ‖𝑄𝑇
1 𝑣 − 𝑅1𝑥‖2 to zero by setting 𝑥 = 𝑅−1

1 𝑄𝑇
1 𝑏; the result is ‖𝑟‖2 = ‖𝑄𝑇

2 𝑏‖2.

The actual thing computed by Julia is a sort of hybrid of the full and economy decompositions.
The data structure representing 𝑄 (in compressed form) can reconstruct the full orthogonal
matrix; but the 𝑅 factor is stored as in the economy form.

SVD

The full QR decomposition is useful because orthogonal transformations do not change lengths.
Hence, the QR factorization lets us change to a coordinate system where the problem is simple
without changing the problem in any fundamental way. The same is true of the SVD, which
we write as

𝐴 = [𝑈1 𝑈2] [Σ
0] 𝑉 𝑇 Full SVD

= 𝑈1Σ𝑉 𝑇 Economy SVD.

As with the QR factorization, we can apply an orthogonal transformation involving the factor
𝑈 that makes the least squares residual norm simple:

‖𝑈𝑇𝑟‖2 = ∥[𝑈𝑇
1 𝑏

𝑈𝑇
2 𝑏] − [Σ𝑉 𝑇

0 ] 𝑥∥ = ‖𝑈𝑇
1 𝑏 − Σ𝑉 𝑇𝑥‖2 + ‖𝑈𝑇

2 𝑏‖2,

and we can minimize by setting 𝑥 = 𝑉 Σ−1𝑈𝑇
1 𝑏.
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The Moore-Penrose pseudoinverse

If 𝐴 is full rank, then 𝐴𝑇𝐴 is symmetric and positive definite matrix, and the normal equations
have a unique solution

𝑥 = 𝐴†𝑏 where 𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇.

The matrix 𝐴† ∈ ℝ𝑛×𝑚 is the Moore-Penrose pseudoinverse. We can also write 𝐴† via the
economy QR and SVD factorizations as

𝐴† = 𝑅−1𝑄𝑇
1 ,

𝐴† = 𝑉 Σ−1𝑈𝑇
1 .

If 𝑚 = 𝑛, the pseudoinverse and the inverse are the same. For 𝑚 > 𝑛, the Moore-Penrose
pseudoinverse has the property that

𝐴†𝐴 = 𝐼;

and
Π = 𝐴𝐴† = 𝑄1𝑄𝑇

1 = 𝑈1𝑈𝑇
1

is the orthogonal projector that maps each vector to the closest vector (in the Euclidean norm)
in the range space of 𝐴.

The good, the bad, and the ugly

At a high level, there are two pieces to solving a least squares problem:

1. Project 𝑏 onto the span of 𝐴.

2. Solve a linear system so that 𝐴𝑥 equals the projected 𝑏.

Consequently, there are two ways we can get into trouble in solving least squares problems: either
𝑏 may be nearly orthogonal to the span of 𝐴, or the linear system might be ill conditioned.

Let’s first consider the issue of 𝑏 nearly orthogonal to the range of 𝐴 first. Suppose we have
the trivial problem

𝐴 = [1
0] , 𝑏 = [𝜖

1] .

The solution to this problem is 𝑥 = 𝜖; but the solution for

𝐴 = [1
0] , ̂𝑏 = [−𝜖

1 ]

is ̂𝑥 = −𝜖. Note that ‖ ̂𝑏 − 𝑏‖/‖𝑏‖ ≈ 2𝜖 is small, but | ̂𝑥 − 𝑥|/|𝑥| = 2 is huge. That is because the
projection of 𝑏 onto the span of 𝐴 (i.e. the first component of 𝑏) is much smaller than 𝑏 itself;
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so an error in 𝑏 that is small relative to the overall size may not be small relative to the size of
the projection onto the columns of 𝐴.

Of course, the case when 𝑏 is nearly orthogonal to 𝐴 often corresponds to a rather silly
regressions, like trying to fit a straight line to data distributed uniformly around a circle, or
trying to find a meaningful signal when the signal to noise ratio is tiny. This is something to
be aware of and to watch out for, but it isn’t exactly subtle: if ‖𝑟‖/‖𝑏‖ is near one, we have a
numerical problem, but we also probably don’t have a very good model. A more subtle problem
occurs when some columns of 𝐴 are nearly linearly dependent (i.e. 𝐴 is ill-conditioned).

The condition number of 𝐴 for least squares is

𝜅(𝐴) = ‖𝐴‖‖𝐴†‖ = 𝜎1/𝜎𝑛.

If 𝜅(𝐴) is large, that means:

1. Small relative changes to 𝐴 can cause large changes to the span of 𝐴 (i.e. there are some
vectors in the span of ̂𝐴 that form a large angle with all the vectors in the span of 𝐴).

2. The linear system to find 𝑥 in terms of the projection onto 𝐴 will be ill-conditioned.

If 𝜃 is the angle between 𝑏 and the range of 𝐴, then the sensitivity to perturbations in 𝑏 is

‖𝛿𝑥‖
‖𝑥‖

≤ 𝜅(𝐴)
cos(𝜃)

‖𝛿𝑏‖‖𝑏‖

while the sensitivity to perturbations in 𝐴 is

‖𝛿𝑥‖
‖𝑥‖

≤ (𝜅(𝐴)2 tan(𝜃) + 𝜅(𝐴)) ‖𝛿𝐴‖
‖𝐴‖

Even if the residual is moderate, the sensitivity of the least squares problem to perturbations
in 𝐴 (either due to roundoff or due to measurement error) can quickly be dominated by
𝜅(𝐴)2 tan(𝜃) if 𝜅(𝐴) is at all large.

In regression problems, the columns of 𝐴 correspond to explanatory factors. For example, we
might try to use height, weight, and age to explain the probability of some disease. In this
setting, ill-conditioning happens when the explanatory factors are correlated — for example,
perhaps weight might be well predicted by height and age in our sample population. This
happens reasonably often. When there is a lot of correlation, we have an ill-posed problem; we
will talk about this case in a couple lectures.
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