
CS 4220: Numerical Analysis
Beyond linear solves + using structure

David Bindel

2026-02-13

Where we are

Summarizing the story so far:

• Computation

– Gaussian elimination with partial pivoting (GEPP) computes 𝑃𝐴 = 𝐿𝑈.
– For 𝐴 symmetric and positive definite, Cholesky is 𝐴 = 𝑅𝑇𝑅.
– There are many LU and Cholesky variants based on different blocking.
– Given a factorization (computed in 𝑂(𝑛3)), solving a linear system involves forward

and backward substitution (𝑂(𝑛2)).
– In Julia, the backslash operation solves linear systems given a matrix (with an

algorithm based on type) or a factorization object.

• Error bounds

– First order bound if (𝐴 + 𝐸) ̂𝑥 = 𝑏 + 𝑓 then

‖ ̂𝑥 − 𝑥‖
‖𝑥‖

≲ 𝜅(𝐴) (‖𝐸‖
‖𝐴‖

+ ‖𝑓‖
‖𝑏‖

)

– Algorithm is backward stable if rounding errors can be recast as small relative errors
in the inputs (‖𝐸‖ = 𝑂(𝜖mach) poly(𝑛)‖𝐴‖).

– GEPP is usually backward stable (but pivot growth — where $|U| �|A| — is possible)
– Cholesky is backward stable.

• Refinement

– Iterative refinement can “clean up” an approximate solve.
– Approximation must be good enough relative to 𝜅(𝐴).
– With convergence, limit is accuracy of residual calculation.

1

We skipped lightly past the issue of how to quickly estimate the condition number efficiently,
nor did we particularly dwell on alternate pivoting schemes, how to choose block sizes, or
variants on the standard error bounds (e.g. using the relative condition number). These are
good topics for another class. In this lecture and the next, we will instead focus on uses of LU
and Cholesky beyond solving linear systems, and then discuss factorization for systems with
special structure.

Uses of factorization

So far, we have mostly focused on factoring matrix as part of the process of solving one or
more linear systems. However, there are many other ways that LU and Cholesky factorizations
(and related factorizations) can be useful as well! Here we will list just a few.

Determinants

Numerical analysts are often wary of determinants. They sometimes lead to scaling problems,
and there are many problems that can be solved with determinants but should be solved with
some other tool in the interest of efficiency and numerical stability. Nonetheless, sometimes we
really do need to compute a determinant, and a factorization is the right way to do it.

As we saw when we first discussed Gaussian elimination, unpermuted LU factorization 𝐴 = 𝐿𝑈
can be seen as applying a series of shear transformations (which are volume preserving) in order
to transform 𝐴 to an upper triangular form 𝑈. Geometrically, we can think of the columns of 𝐴
as edges of a parallelipiped with one corner at zero. Then the action of the Gaussian elimination
is to shear this shape into an axis-aligned paralleliped, where the first edge is aligned with the
𝑥 axis, the second edge lies in the (𝑥, 𝑦) plane, and so forth. We know how to compute the
volume of an axis-aligned parallelipiped: we multiply the base by the height and so on. That
is, the (signed) volume of the parallelipiped with edges given by 𝑈 is det(𝑈) = ∏𝑛

𝑖=1 𝑢𝑖𝑖.

Alternately, if we feel uncertain about the geometry of determinants and parallelipipeds but
are comfortable with the Laplace expansion of the determinant in terms of minors, then we
can see that the determinant of a triangular matrix is the product of the diagonal elements,
and so if 𝐴 = 𝐿𝑈 we have

det(𝐴) = det(𝐿) det(𝑈), det(𝐿) =
𝑛

∏
𝑖=1

1 = 1, det(𝑈) =
𝑛

∏
𝑖=1

𝑢𝑖𝑖.

Given the factorization 𝑃𝐴 = 𝐿𝑈, we can similarly compute

det(𝐴) = det(𝑃) det(𝑈) = (−1)𝑠
𝑛

∏
𝑖=1

𝑢𝑖𝑖

where det(𝑃) is the sign of the permutation, i.e.
det(𝑃) = (−1)𝑠, 𝑠 = number of row swaps.

2

Low-rank approximation

For a positive definite matrix 𝐴, the pivoted Cholesky algorithm computes

𝑃𝐴𝑃 𝑇 = 𝑅𝑇𝑅.

As with partial pivoting, we choose the swaps that go into 𝑃 to move the biggest plausible
element up at each step; but in this case, we are choosing from the diagonal elements of the
Schur complement. In Julia, this can be computed by F = Cholesky(A, RowMaximum()).

We know that Cholesky is backward stable without pivoting. So why consider pivoting?
One reason is that we can think of pivoted Cholesky as greedily constructing a sequence of
approximations

𝐴 ≈ 𝐴∶,𝐼𝐴−1
𝐼𝐼 𝐴𝑇

∶,𝐼.
That is, we select a subset of the rows and columns of 𝐴 (by permuting them to the front),
adding each new row/column according to where the largest error is in the remainder (the
Schur complement). This is not necessarily an optimal way to select rows and columns to form
a low-rank approximation, but it is often pretty good, and serves as a good starting point for
other methods.

We note that Gaussian elimination with complete pivoting computes a matrix factorization
𝑃𝐴𝑄 = 𝐿𝑈 where 𝑃 and 𝑄 are row and column permutation matrices, and truncating this
factorization similarly gives us a low-rank approximation to 𝐴 (albeit not a foolproof one).

Testing definiteness

If 𝐴 is a symmetric positive definite matrix, the Cholesky algorithm computes a factorization
𝐴 = 𝑅𝑇𝑅 where 𝑅 is nonsingular. Conversely, if 𝐴 = 𝑅𝑇𝑅 where 𝑅 is nonsingular, then 𝐴
is positive definite (because 𝑥𝑇𝐴𝑥 = ‖𝑅𝑥‖2 > 0 for any 𝑥 ≠ 0). Therefore, the way that we
usually check for positive definiteness is by running the Cholesky algorithm and seeing whether
it succeeds!

Computing inertia

The so-called 𝐿𝐷𝐿𝑇 factorization of a symmetric matrix 𝐴 is

𝑃𝐴𝑃 𝑇 = 𝐿𝐷𝐿𝑇

where 𝑃 is a permutation matrix, 𝐿 is unit lower triangular, and 𝐷 is diagonal. The computation
of this factorization follows essentially the same pattern as Cholesky or LU. Note that if we let
𝑋 = 𝑃 𝑇𝐿, then we have

𝐴 = 𝑋𝑇𝐷𝑋,
i.e. 𝐴 and 𝐷 are congruent to each other, and therefore have the same inertia. This factorization
is frequently the most efficient way to compute the inertia of a matrix.

3

Sampling multivariate Gaussians

Suppose that 𝑍 is a random vector with independent standard normal entries. Then the
random vector 𝑌 = 𝐴𝑍 is a multivariate normal with mean zero and covariance

Var(𝐴𝑍) = 𝐴 Var(𝑍)𝐴𝑇 = 𝐴𝐴𝑇.

Therefore, if we want to sample from a multivariate normal with mean zero and covariance 𝐾,
we can do the following:

• Compute the Cholesky factorization 𝐾 = 𝑅𝑇𝑅
• Sample 𝑍 with independent standard normal entries
• Compute a sample 𝑌 = 𝑅𝑇𝑍

It turns out that the Cholesky factor can be used to turn many computations involving a
general multivariate Gaussian into an equivalent calculation involving a vector of independent
standard normals. This conversion is sometimes called a whitening transformation.

Faster factorizations

The standard dense Gaussian elimination and Cholesky algorithms take 𝑂(𝑛3) time to factor
an 𝑛-by-𝑛 matrix. However, we can sometimes factor special types of matrices more quickly.
The most common case is matrices that are banded or sparse. We will deal with the general
sparse case in a separate lecture; for now, let’s consider some simpler structures.

A Hessenberg warmup

A matrix 𝐻 is upper Hessenberg if ℎ𝑖𝑗 = 0 for 𝑖 > 𝑗 + 1. That is, an upper Hessenberg matrix
looks like an upper triangular matrix plus an additional subdiagonal:

𝐻 =
⎡
⎢
⎢
⎢
⎣

ℎ11 ℎ12 ℎ13 … ℎ1,𝑛−1 ℎ1𝑛
ℎ21 ℎ22 ℎ23 … ℎ2,𝑛−1 ℎ2𝑛

ℎ32 ℎ33 … ℎ2,𝑛−1 ℎ3𝑛
⋱ ⋱ ⋮ ⋮

ℎ𝑛,𝑛−1 ℎ𝑛𝑛

⎤
⎥
⎥
⎥
⎦

What happens if we apply Gaussian elimination to an upper Hessenberg matrix? Let’s first
consider the case where no pivoting is needed. To “zero out” the subdiagonal elements in the
first column, we only need to subtract a multiple of the first row from the second row:

⎡
⎢
⎢
⎢
⎣

ℎ11 ℎ12 ℎ13 … ℎ1,𝑛−1 ℎ1𝑛
ℎ21 ℎ22 ℎ23 … ℎ2,𝑛−1 ℎ2𝑛

ℎ32 ℎ33 … ℎ2,𝑛−1 ℎ3𝑛
⋱ ⋱ ⋮ ⋮

ℎ𝑛,𝑛−1 ℎ𝑛𝑛

⎤
⎥
⎥
⎥
⎦

↦
⎡
⎢
⎢
⎢
⎣

𝑢11 𝑢12 𝑢13 … 𝑢1,𝑛−1 𝑢1𝑛
𝑙21 𝑠22 𝑠23 … 𝑠2,𝑛−1 𝑠2𝑛

ℎ32 ℎ33 … ℎ2,𝑛−1 ℎ3𝑛
⋱ ⋱ ⋮ ⋮

ℎ𝑛,𝑛−1 ℎ𝑛𝑛

⎤
⎥
⎥
⎥
⎦

4

where 𝑢1𝑗 = ℎ1𝑗, 𝑙21 = ℎ21/ℎ11, and 𝑠2𝑗 = ℎ2𝑗 − 𝑙21𝑢1𝑗. Because we are only updating one
row, the cost of this first elimination step is 𝑂(𝑛); and the Schur complement again has upper
Hessenberg structure! So we have 𝑛 − 1 elimination steps, each of which costs 𝑂(𝑛) for a total
cost of 𝑂(𝑛2).

What if we need to pivot? In the first step, there are only two things that can happen: we
leave the order alone, or we swap the first two rows. In either case, the upper Hessenberg
structure of the problem remains the same, and we again have an 𝑂(𝑛2) algorithm that factors
𝑃𝐻 = 𝐿𝑈 where 𝐿 is unit lower bidiagonal:

𝐿 =
⎡
⎢
⎢
⎢
⎣

1
𝑙21 1

𝑙32 1
⋱ ⋱

𝑙𝑛,𝑛−1 1

⎤
⎥
⎥
⎥
⎦

Tricky tridiagonal

Now consider Cholesky factorization of a symmetric tridiagonal matrix

𝑇 =
⎡
⎢
⎢
⎢
⎣

𝛼1 𝛽1
𝛽1 𝛼2 𝛽2

⋱ ⋱ ⋱
𝛽𝑛−2 𝛼𝑛−1 𝛽𝑛−1

𝛽𝑛−1 𝛼𝑛

⎤
⎥
⎥
⎥
⎦

.

The first step of Cholesky factorization computes 𝑟11 = √𝛼1 and 𝑟12 = 𝛽1/𝑟11, and all the
other elements in the first row of 𝑅 are zero! The Schur complement is simply

𝑆 =
⎡
⎢
⎢
⎢
⎣

𝛼2 − 𝑟2
21 𝛽2

𝛽2 𝛼3 𝛽3
⋱ ⋱ ⋱

𝛽𝑛−2 𝛼𝑛−1 𝛽𝑛−1
𝛽𝑛−1 𝛼𝑛

⎤
⎥
⎥
⎥
⎦

;

this is almost the same as the trailing submatrix of 𝑇, with only the first diagonal element
changed. Hence, the Cholesky factorization of can be computed with a constant cost per step
(total time 𝑂(𝑛)) using the following algorithm:

function tridiag_cholesky(T :: SymTridiagonal)

n = size(T)[1]

dv = copy(T.dv) # Diagonal elements

ev = copy(T.ev) # Superdiagonal elements

for j = 1:n-1

5

dv[j] = sqrt(dv[j])

ev[j] /= dv[j]

dv[j+1] -= ev[j]^2

end

dv[n] = sqrt(dv[n])

Bidiagonal(dv, ev, :U) # Return an upper bidiagonal

end

One can also simply call the Julia cholesky routine on a SymTridiagonal input matrix to get
this — Julia will do the right thing based on the input matrix type.

6

	Where we are
	Uses of factorization
	Determinants
	Low-rank approximation
	Testing definiteness
	Computing inertia
	Sampling multivariate Gaussians

	Faster factorizations
	A Hessenberg warmup
	Tricky tridiagonal

