
CS 4220: Numerical Analysis
GEPP, backward error analysis, refinement

David Bindel

2026-02-11

The wonderful backslash

In Julia, we can solve the linear system 𝐴𝑥 = 𝑏 in several different ways, each of them using
the backslash operator:

Good if we want to solve just one system

x = A\b

Good if we want to solve multiple systems with A

F = lu(A)

x = F\b

Also OK, though verbose

L,U,p = lu(A)

x = U\(L\b[p])

The backslash operator is overloaded for different types of objects. For triangular matrices,
backslash applies forward or backward substitution; for factorization objects, backslash involves
both a forward and backsubstitution pass. When we simply compute A\b, Julia factors the
matrix 𝐴 (using Gaussian elimination) and then solves the system using forward and backward
substitution.

The following code is generally not a good idea:

BAD idea -- don't do this!

x = inv(A)*b # Code that calls `inv` deserves skepticism

x = U\L\b[p] # Order of operations means we form U\L!

1

Computing an explicit inverse generally is equivalent to computing A\I: first we factor 𝐴, then
we solve a linear system for each column of the identity matrix. Forming and multiplying by
an explicit inverse is thus more expensive than simply using LU factorization from the outset!
It is also less numerically stable. There are rare cases where an explicit inverse is appropriate,
but in general, if you call inv in this class without explicit instructions to do so, we will deduct
points.

Perturbation theory

Previously, we described a general error analysis strategy: derive forward error bounds by
combining a sensitivity estimate (in terms of a condition number) with a backward error analysis
that explains the computed result as the exact answer to a slightly erroneous problem. To
follow that strategy here, we need the sensitivity analysis of solving linear systems.

Suppose that 𝐴𝑥 = 𝑏 and that ̂𝐴 ̂𝑥 = ̂𝑏, where ̂𝐴 = 𝐴 + 𝛿𝐴, ̂𝑏 = 𝑏 + 𝛿𝑏, and ̂𝑥 = 𝑥 + 𝛿𝑥. Then

𝛿𝐴 𝑥 + 𝐴 𝛿𝑥 + 𝛿𝐴 𝛿𝑥 = 𝛿𝑏.

Assuming the delta terms are small, we have the linear approximation

𝛿𝐴 𝑥 + 𝐴 𝛿𝑥 ≈ 𝛿𝑏.

We can use this to get 𝛿𝑥 alone:

𝛿𝑥 ≈ 𝐴−1(𝛿𝑏 − 𝛿𝐴 𝑥);

and taking norms gives us
‖𝛿𝑥‖ ≲ ‖𝐴−1‖(‖𝛿𝑏‖ + ‖𝛿𝐴‖‖𝑥‖).

Now, divide through by ‖𝑥‖ to get the relative error in 𝑥:

‖𝛿𝑥‖
‖𝑥‖

≲ ‖𝐴‖‖𝐴−1‖ (‖𝛿𝐴‖
‖𝐴‖

+ ‖𝛿𝑏‖
‖𝐴‖‖𝑥‖

) .

Recall that ‖𝑏‖ ≤ ‖𝐴‖‖𝑥‖ to arrive at

‖𝛿𝑥‖
‖𝑥‖

≲ 𝜅(𝐴) (‖𝛿𝐴‖
‖𝐴‖

+ ‖𝛿𝑏‖
‖𝑏‖

) ,

where 𝜅(𝐴) = ‖𝐴‖‖𝐴−1‖. That is, the relative error in 𝑥 is (to first order) bounded by the
condition number times the relative errors in 𝐴 and 𝑏. We can go beyond first order using
Neumann series bounds – but perhaps not today.

2

Backward error in Gaussian elimination

Solving 𝐴𝑥 = 𝑏 in finite precision using Gaussian elimination followed by forward and backward
substitution yields a computed solution ̂𝑥 exactly satisfies

(𝐴 + 𝛿𝐴) ̂𝑥 = 𝑏, (1)

where |𝛿𝐴| ≲ 3𝑛𝜖mach|𝐿̂|| ̂𝑈 |, assuming 𝐿̂ and ̂𝑈 are the computed 𝐿 and 𝑈 factors.

I will now briefly sketch a part of the error analysis following Demmel’s treatment (§2.4.2,
Applied Numerical Linear Algebra). Here is the idea. Suppose 𝐿̂ and ̂𝑈 are the computed 𝐿
and 𝑈 factors. We obtain 𝑢̂𝑗𝑘 by repeatedly subtracting 𝑙𝑗𝑖𝑢𝑖𝑘 from the original 𝑎𝑗𝑘, i.e.

𝑢̂𝑗𝑘 = fl (𝑎𝑗𝑘 −
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘) .

Regardless of the order of the sum, we get an error that looks like

𝑢̂𝑗𝑘 = 𝑎𝑗𝑘(1 + 𝛿0) −
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(1 + 𝛿𝑖) + 𝑂(𝜖2
mach)

where |𝛿𝑖| ≤ (𝑗 − 1)𝜖mach. Turning this around gives

𝑎𝑗𝑘 = 1
1 + 𝛿0

(̂𝑙𝑗𝑗𝑢̂𝑗𝑘 +
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(1 + 𝛿𝑖)) + 𝑂(𝜖2
mach)

= ̂𝑙𝑗𝑗𝑢̂𝑗𝑘(1 − 𝛿0) +
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(1 + 𝛿𝑖 − 𝛿0) + 𝑂(𝜖2
mach)

= (𝐿̂ ̂𝑈)
𝑗𝑘

+ 𝐸𝑗𝑘,

where

𝐸𝑗𝑘 = − ̂𝑙𝑗𝑗𝑢̂𝑗𝑘𝛿0 +
𝑗−1

∑
𝑖=1

̂𝑙𝑗𝑖𝑢̂𝑖𝑘(𝛿𝑖 − 𝛿0) + 𝑂(𝜖2
mach)

is bounded in magnitude by (𝑗 − 1)𝜖mach(|𝐿||𝑈|)𝑗𝑘 + 𝑂(𝜖2
mach). A similar argument for the

components of 𝐿̂ yields

𝐴 = 𝐿̂ ̂𝑈 + 𝐸, where |𝐸| ≤ 𝑛𝜖mach|𝐿̂|| ̂𝑈 | + 𝑂(𝜖2
mach).

In addition to the backward error due to the computation of the 𝐿𝑈 factors, there is also
backward error in the forward and backward substitution phases, which gives the overall bound
Equation 1.

3

Partial pivoting

We saw at the end of the last lecture that even when pivoting is not strictly necessary in exact
arithmetic, it may be desirable in floating point to prevent the elements of 𝐿 and 𝑈 from
becoming much larger in magnitude than the elements of 𝐴 — particularly given the backward
error analysis described in the previous section.

If we wish to control the multipliers (the elements of 𝐿), it’s natural to choose a permutation 𝑃
so that each multiplier has magnitude at most one. This standard choice leads to the following
algorithm:

Return L, U, p s.t. A[p,:] = L*U and the largest entry of L has magnitude 1

function my_pivoted_lu(A)

n = size(A)[1]

A = copy(A) # Make a local copy to overwrite

piv = zeros(Int, n) # Space for the pivot vector

piv[1:n] = 1:n

for j = 1:n-1

Find ipiv >= j to maximize |A(i,j)|

ipiv = (j-1)+findmax(abs.(A[j:n,j]))[2]

Swap row ipiv and row j and record the pivot row

A[ipiv,:], A[j,:] = A[j,:], A[ipiv,:]

piv[ipiv], piv[j] = piv[j], piv[ipiv]

Compute multipliers and update trailing submatrix

A[j+1:n,j] /= A[j,j]

A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'

end

UnitLowerTriangular(A), UpperTriangular(A), piv

end

By design, this algorithm produces an 𝐿 factor in which all the elements are bounded by one.
But what about the 𝑈 factor? There exist pathological matrices for which the elements of
𝑈 grow exponentially with 𝑛. But these examples are extremely uncommon in practice, and
so, in general, Gaussian elimination with partial pivoting does indeed have a small backward
error. Of course, the pivot growth is something that we can monitor, so in the unlikely event

4

that it does look like things are blowing up, we can tell there is a problem and try something
different.

When problems do occur, it is more frequently the result of ill-conditioning in the problem
than of pivot growth during the factorization.

Residuals and iterative refinement

If we know 𝐴 and 𝑏, a reasonable way to evaluate an approximate solution ̂𝑥 is through the
residual 𝑟 = 𝑏 − 𝐴 ̂𝑥. The approximate solution satisfies

𝐴 ̂𝑥 = 𝑏 + 𝑟,

so if we subtract off 𝐴𝑥 = 𝑏, we have

̂𝑥 − 𝑥 = 𝐴−1𝑟.

We can use this to get the error estimate

‖ ̂𝑥 − 𝑥‖ = ‖𝐴−1‖‖𝑟‖;

but for a given ̂𝑥, we also actually have a prayer of evaluating 𝛿𝑥 = 𝐴−1𝑟 with at least some
accuracy. It’s worth pausing to think how novel this situation is. Generally, we can only bound
error terms. If I tell you “my answer is off by just about 2.5,” you’ll look at me much more
sceptically than if I tell you “my answer is off by no more than 2.5,” and reasonably so. After
all, if I knew that my answer was off by nearly 2.5, why wouldn’t I add 2.5 to my original
answer in order to get something closer to truth? This is exactly the idea behind iterative
refinement:

1. Get an approximate solution 𝐴 ̂𝑥1 ≈ 𝑏.

2. Compute the residual 𝑟 = 𝑏 − 𝐴 ̂𝑥1 (to good accuracy).

3. Approximately solve 𝐴 𝛿𝑥1 ≈ 𝑟.

4. Get a new approximate solution ̂𝑥2 = ̂𝑥1 + 𝛿𝑥1; repeat as needed.

5

	The wonderful backslash
	Perturbation theory
	Backward error in Gaussian elimination
	Partial pivoting
	Residuals and iterative refinement

