
CS 4220: Numerical Analysis
Blocked LU and Cholesky

David Bindel

2026-02-09

LU, take 2

In the last lecture, we described Gaussian elimination as applying a series of Gauss transforms
𝑀1, … , 𝑀𝑛−1 such that

𝑀𝑛−1 … 𝑀1𝐴 = 𝑈

where 𝑈 is an upper triangular matrix. We then observed that we can summarize these
operations as

𝐴 = 𝐿𝑈, 𝐿 = 𝑀−1
1 … 𝑀𝑛−1

where the 𝐿 matrix are exactly the multipliers that appear during the Gaussian elimination
process.

If we know that we can write 𝐴 = 𝐿𝑈 (absent the issue of running into a diagonal pivot), we
can also figure out what 𝐿 and 𝑈 must be without directly thinking about manipulating a
series of Gauss transformations. To do this, it is useful to take a block matrix perspective. We
do this in two ways.

Take 1: Right-looking LU

Let 𝐴 ∈ ℝ𝑛×𝑛 be written as
𝐴 = [𝑎11 𝑎12

𝑎21 𝐴22
]

where 𝑎11 is a scalar, 𝑎12 and 𝑎21 are row and column vectors of length 𝑛, and 𝐴22 ∈ ℝ(𝑛−1)×(𝑛−1).
We can similarly partition 𝐿 and 𝑈. With respect to this partitioning, the equation 𝐴 = 𝐿𝑈
looks like

[𝑎11 𝑎12
𝑎21 𝐴22

] = [1 0
𝑙21 𝐿22

] [𝑢11 𝑢12
0 𝑈22

] .

1

We can separate this into four equations, one for each block of 𝐴:

𝑎11 = 𝑢11

𝑎12 = 𝑢12

𝑎21 = 𝑙21𝑢11

𝐴22 = 𝑙21𝑢12 + 𝐿22𝑈22

If we rearrange the equations, we have a recursive algorithm for computing the factorization

𝑢11 = 𝑎11

𝑢12 = 𝑎12

𝑙21 = 𝑎21/𝑢11

𝐿22𝑈22 = 𝐴22 − 𝑙21𝑢12

The expression 𝐴22 − 𝑙21𝑢12 is the Schur complement in the matrix — we will see later that
this has meaning beyond “weird thing that shows up in Gaussian elimination.” In code, we can
write a function that recursively replaces 𝐴 by the packed 𝐿 and 𝑈 factors:

function lu1(A)

n = size(A)[1]

if n != 1

A[2:n,1] ./= A[1,1] # Compute l21

A[2:n,2:n] .-= A[2:n,1]*A[1,2:n]' # Schur complement

lu1(view(A,2:n,2:n))

end

A

end

We can equally well write this with loops rather than recursively.

If we sanity check with a randomly generated 4-by-4 matrix, we find that the 𝐿 and 𝑈 factors
computed by lu1 have a relative error on the order of machine epsilon, as we would hope:

let

A = [0.484855 0.370397 0.528243 0.553611;

1.0394 0.614561 -0.446556 -0.561344;

0.831893 0.777628 0.803044 0.774805;

1.68925 -0.0730347 0.0843504 -0.290536]

LU = lu1(copy(A))

L = UnitLowerTriangular(LU)

U = UpperTriangular(LU)

norm(L*U-A)/norm(A)

end

3.0095111196400583e-16

2

Take 1: Left-looking LU

There is nothing sacred about partitioning 𝐴 the way that we did. An equally good approach
is to write

𝐴 = [𝐴11 𝑎12
𝑎21 𝑎22

]

where 𝐴11 ∈ ℝ(𝑛−1)×(𝑛−1), 𝑎12 and 𝑎21 are a column and row vector, respectively, and 𝑎22 is
scalar. As before, we partition 𝐿 and 𝑈 in the same way as 𝐴, and get four block equations

𝐴11 = 𝐿11𝑈11

𝑎12 = 𝐿11𝑢12

𝑎21 = 𝑙21𝑈11

𝑎22 = 𝑙21𝑢12 + 𝑢22.

We can now rewrite the equations as a way of computing the pieces of 𝐿 and 𝑈:

𝐿11𝑈11 = 𝐴11

𝑢12 = 𝐿−1
11 𝑎12

𝑙21 = 𝑎21𝑈−1
11

𝑢22 = 𝑎11 − 𝑙21𝑢12.

In code, we can write this as:

function lu2(A)

n = size(A)[1]

if n != 1

A11 = view(A,1:n-1,1:n-1)

a21 = view(A,1:n-1,n)

a12 = view(A,n,1:n-1)

lu2(A11) # Factor A11

a21[:] = UnitLowerTriangular(A11)\a21 # Compute u21

a12[:] = a12'/UpperTriangular(A11) # Compute l12

A[n,n] -= a21'*a12 # Compute u22

end

A

end

Again, we can also write this with loops rather than recursively.

If we sanity check with a randomly generated 4-by-4 matrix, we find that the 𝐿 and 𝑈 factors
computed by lu2 again have a relative error on the order of machine epsilon:

3

let

A = [0.484855 0.370397 0.528243 0.553611;

1.0394 0.614561 -0.446556 -0.561344;

0.831893 0.777628 0.803044 0.774805;

1.68925 -0.0730347 0.0843504 -0.290536]

LU = lu2(copy(A))

L = UnitLowerTriangular(LU)

U = UpperTriangular(LU)

norm(L*U-A)/norm(A)

end

1.5129012086913948e-16

General blocking

There is nothing sacred about partitioning 𝐴 so as to “pull off” a single row and column of the
factorization from the beginning or end. We can equally well write

𝐴 = [𝐴11 𝐴12
𝐴21 𝐴22

]

where 𝐴11 and 𝐴22 are square matrices. If we partition 𝐿 and 𝑈 in the same way, we have

𝐿11𝑈11 = 𝐴11

𝑈12 = 𝐿−1
11 𝐴12

𝐿21 = 𝐴21𝑈−1
11

𝐿22𝑈22 = 𝐴22 − 𝐿21𝑈12.

That is, we factor the 𝐴11 submatrix, do triangular solves with multiple right hand sides
to compute 𝑈12 and 𝐿21, form a Schur complement, and then recursively factor that Schur
complement. If the leading submatrix fits into a low level of cache, this organization has the
advantage that we can do a lot of work in the initial factorization and the formation of the
Schur complement in a way that has very good memory locality and uses a lot of level 3 BLAS
operations. This is what we want for good performance.

Sherman-Morrison

Manipulating block matrices is not just useful for thinking about Gaussian elimination! As an
example, consider the problem of solving

(𝐴 + 𝑏𝑐𝑇)𝑥 = 𝑓

4

for a fixed 𝐴 but many possible choices of 𝑏, 𝑐, and 𝑓. We could, of course, re-factor 𝐴 (at
cost of 𝑂(𝑛3)) for every new 𝑏, $c, and 𝑓 — but there is a better way. We know from our
discussion of matrix multiply that in general we want to avoid forming rank-one matrices
explicitly; instead, it’s a good idea to write

(𝑏𝑐𝑇)𝑥 = 𝑏(𝑐𝑇𝑥) = 𝑏𝑦, 𝑦 = 𝑐𝑇𝑥.

If we explicitly think of 𝑦 as an unknown and 𝑦 = 𝑐𝑇𝑥 as part of our system of equations, we
have

[𝐴 𝑏
𝑐𝑇 −1] [𝑥

𝑦] = [𝑓
0] .

Now we can do block Gaussian elimination on this linear system. First we subtract a multiple
of the first block row from the second to get

[𝐴 𝑏
0 −1 − 𝑐𝑇𝐴−1𝑏] [𝑥

𝑦] = [𝑓
−𝑐𝑇𝐴−1𝑓] .

Now block back-substitution gives us

𝑦 = 𝑐𝑇𝐴−1𝑓
1 + 𝑐𝑇𝐴−1𝑏

𝑥 = 𝐴−1(𝑓 − 𝑏𝑦)

Substituting the expression for 𝑦 from the first equation into the second equation gives us the
Sherman-Morrison formula

𝑥 = 𝐴−1𝑓 − 𝐴−1𝑏𝑐𝑇𝐴−1𝑓
1 + 𝑐𝑇𝐴−1𝑏

.

It is possible to memorize or look up this formula, but when I need it, I usually just re-derive
it in terms of Gaussian elimination on a block matrix, as written here.

Cholesky factorization

When 𝐴 ∈ ℝ𝑛×𝑛 is symmetric and positive definite, we usually avoid LU and instead use the
Cholesky factorization 𝐴 = 𝑅𝑇𝑅 where 𝑅 is upper triangular. We can derive the factorization
recursively as we did for LU. Let

[𝑎11 𝑎12
𝑎𝑇

12 𝐴22
] = [𝑟11 𝑟12

0 𝑅22
]

𝑇

[𝑟11 𝑟12
0 𝑅22

] .

Because of symmetry, we can completely describe this picture with three (rather than four)
block equations:

𝑎11 = 𝑟2
11

𝑎12 = 𝑟11𝑟12

𝐴22 = 𝑟𝑇
12𝑟12 + 𝑅𝑇

22𝑅22.

5

As before, we rearrange these to get an algorithm for computing pieces of 𝑅:

𝑟11 = √𝑎11

𝑟12 = 𝑎12/𝑟11

𝑅𝑇
22𝑅22 = 𝐴22 − 𝑟𝑇

12𝑟12.

Note that 𝑎11 > 0 by positive definiteness of 𝐴, and therefore 𝑟12 is also well defined. It turns
out (and is left as an exercise) that the Schur complement 𝐴22 − 𝑟𝑇

12𝑟12 must also be positive
definite, and so the recursion for computing the Cholesky factorization will run to completion
without issue.

As with LU factorization, the Cholesky factorization can be computed in various ways associated
with different blockings of the matrix. Unlike LU factorization, the Cholesky factorization
never requires that we do any pivoting – a topic we turn to next.

Pivoting

In a first linear algebra class, we learn that we need row permutations to be able to solve
systems with matrices like

𝐴 = [0 1
1 1]

We cannot substract a multiple of the first row from the second row in order to put a zero
into the (2, 1) slot; if we try to apply the standard algorithm, we run into division by zero.
Everything works fine if we swap the two rows and factor

𝑃𝐴 = [1 1
0 1] , 𝑃 = [0 1

1 0] .

What happens if we replace the zero with something tiny? That is, consider now the factorization
of

𝐴 = [𝛿 1
1 1]

where 𝛿 is nonzero but tiny (less than 𝜖mach). In this case, we don’t need to pivot to compute
an LU factorization in exact arithmetic:

[𝛿 1
1 1] = [1 0

𝛿−1 1] [𝛿 1
0 1 − 𝛿−1] .

However, even if 𝛿 and 𝛿−1 are exactly representable in floating point, 1 − 𝛿−1 will round to
−𝛿−1; and

[1 0
𝛿−1 1] [𝛿 1

0 −𝛿−1] = [𝛿 1
1 0] .

6

That is, a small relative error due to rounding the entries of 𝑈 leads to an enormous relative
error in 𝐴. The problem, fundamentally, is that we have allowed the entries of 𝐿 and 𝑈 to get
absolutely enormous, much larger than the entries of 𝐴, setting ourselves up for small errors in
the coefficients of those matrices to be enormous relative to 𝐴. To (mostly) fix this problem,
we will turn in the next lecture to Gaussian elimination with partial pivoting (GEPP).

7

	LU, take 2
	Take 1: Right-looking LU
	Take 1: Left-looking LU

	General blocking
	Sherman-Morrison
	Cholesky factorization
	Pivoting

