CS 4220: Numerical Analysis

Blocked LU and Cholesky
David Bindel
2026-02-09

LU, take 2

In the last lecture, we described Gaussian elimination as applying a series of Gauss transforms
M, ...,M, _, such that
M’I’L—l e MIA — U

where U is an upper triangular matrix. We then observed that we can summarize these
operations as
A=LU, L=M;{'.M

n—1
where the L matrix are exactly the multipliers that appear during the Gaussian elimination

process.

If we know that we can write A = LU (absent the issue of running into a diagonal pivot), we
can also figure out what L and U must be without directly thinking about manipulating a
series of Gauss transformations. To do this, it is useful to take a block matrix perspective. We
do this in two ways.

Take 1: Right-looking LU

Let A € R™™™ be written as

a a
A= | 12}
|:a21 Agg

where a,, is a scalar, a;, and a; are row and column vectors of length n, and A,, € R»~1x(n=1),
We can similarly partition L and U. With respect to this partitioning, the equation A = LU

looks like
[an a’12:| _ [1 0 } [Un U12] .
agy Agy lor Lo 0 Uy

We can separate this into four equations, one for each block of A:
11 = Uny
G1p = Uy
gy = lyyugy
Agy = ly1uyp + LoyUs,y

If we rearrange the equations, we have a recursive algorithm for computing the factorization

Uy = aqy
a2
lyy = agy /uy,
LUy = Agy — lyyugg
The expression Ayy — lyu;5 is the Schur complement in the matrix — we will see later that

this has meaning beyond “weird thing that shows up in Gaussian elimination.” In code, we can
write a function that recursively replaces A by the packed L and U factors:

function Tul(A)
n = size(A)[1]

ifn =1
Al[2:n,1] ./= A[1,1] # Compute 121
A[2:n,2:n] .-= A[2:n,1]*A[1,2:n]"' # Schur complement
lul(view(A,2:n,2:n))

end

A

end

We can equally well write this with loops rather than recursively.

If we sanity check with a randomly generated 4-by-4 matrix, we find that the L and U factors
computed by lul have a relative error on the order of machine epsilon, as we would hope:

let
A = [0.484855 0.370397 0.528243 0.553611;
1.0394 0.614561 -0.446556 -0.561344;
0.831893 0.777628 0.803044 0.774805;
1.68925 -0.0730347 0.0843504 -0.290536]
LU = lul(copy(A))
L = UnitLowerTriangular(LU)
U = UpperTriangular(LU)
norm(L*U-A)/norm(A)
end

3.0095111196400583e-16

Take 1: Left-looking LU

There is nothing sacred about partitioning A the way that we did. An equally good approach
is to write
A= [All a12}
Qo1 Qg9
where A;; € R=Dx(=1 4 . and ay, are a column and row vector, respectively, and aq, is
scalar. As before, we partition L and U in the same way as A, and get four block equations
Ay =Lyl
a1y = Lyyuyy
ag =l Upy
gy = ly1Uyg + Ugy.
We can now rewrite the equations as a way of computing the pieces of L and U:
LUy = Ay
Uy = Lijag,
lyy = an Uy
Ugy = Gyy — Loy tyy.

In code, we can write this as:

function lu2(A)
n = size(A)[1]
ifn =1
All

view(A,1:n-1,1:n-1)

a2l = view(A,1l:n-1,n)
al2 = view(A,n,1:n-1)
1u2(A11) # Factor All
a2l[:] = UnitLowerTriangular(All)\a21l # Compute u2l
al2[:] = al2'/UpperTriangular(All) # Compute 112
Aln,n] -= a2l1'*al2 # Compute u22
end
A

end

Again, we can also write this with loops rather than recursively.

If we sanity check with a randomly generated 4-by-4 matrix, we find that the L and U factors
computed by lu2 again have a relative error on the order of machine epsilon:

let
A = [0.484855 0.370397 0.528243 0.553611;
1.039%4 0.614561 -0.446556 -0.561344;
0.831893 0.777628 0.803044 0.774805;
1.68925 -0.0730347 0.0843504 -0.290536]
LU = lu2(copy(A))
L = UnitLowerTriangular(LU)
U = UpperTriangular(LU)
norm(L*U-A)/norm(A)
end

1.5129012086913948e-16

General blocking

There is nothing sacred about partitioning A so as to “pull off” a single row and column of the
factorization from the beginning or end. We can equally well write

A, A
A = |41 12}
[A21 Ay

where A, and A,, are square matrices. If we partition L and U in the same way, we have

LUy =4y,
Upp = L1 Apy
Ly = Ay Uy
LyoUsy = Agy — Ly Ups.
That is, we factor the A;; submatrix, do triangular solves with multiple right hand sides
to compute U;5 and L,q, form a Schur complement, and then recursively factor that Schur
complement. If the leading submatrix fits into a low level of cache, this organization has the
advantage that we can do a lot of work in the initial factorization and the formation of the

Schur complement in a way that has very good memory locality and uses a lot of level 3 BLAS
operations. This is what we want for good performance.

Sherman-Morrison

Manipulating block matrices is not just useful for thinking about Gaussian elimination! As an
example, consider the problem of solving

(A+bchz = f

for a fixed A but many possible choices of b, ¢, and f. We could, of course, re-factor A (at
cost of O(n?)) for every new b, $c, and f — but there is a better way. We know from our
discussion of matrix multiply that in general we want to avoid forming rank-one matrices
explicitly; instead, it’s a good idea to write

(bcDz = b(cTx) = by, y=cla.

T,

If we explicitly think of y as an unknown and y = ¢*x as part of our system of equations, we

ERE

Now we can do block Gaussian elimination on this linear system. First we subtract a multiple
of the first block row from the second to get

b -t [= et]

Now block back-substitution gives us

_ CTA—lf
Y= T eTa Ty
x=A"(f—by)

Substituting the expression for y from the first equation into the second equation gives us the
Sherman-Morrison formula

A bcTALf

1+cTA- 1

It is possible to memorize or look up this formula, but when I need it, I usually just re-derive
it in terms of Gaussian elimination on a block matrix, as written here.

r=A1f—

Cholesky factorization

When A € R™*"™ is symmetric and positive definite, we usually avoid LU and instead use the
Cholesky factorization A = RTR where R is upper triangular. We can derive the factorization
recursively as we did for LU. Let

T
[an 6l12] _ {7’11 7“12} [7"11 7"12] ‘
afy A 0 Ry 0 Ry
Because of symmetry, we can completely describe this picture with three (rather than four)
block equations:

_ .2
a1 =711
Q19 = T11712

_ T T
Agy = 11719 + Ryp Roy.

As before, we rearrange these to get an algorithm for computing pieces of R:

T11 = V011
T1g = a15/T1;
T _ T
Ry Ry = Agy — 1712

Note that a;; > 0 by positive definiteness of A, and therefore r,, is also well defined. It turns
out (and is left as an exercise) that the Schur complement A,, — rl,r;, must also be positive
definite, and so the recursion for computing the Cholesky factorization will run to completion
without issue.

As with LU factorization, the Cholesky factorization can be computed in various ways associated
with different blockings of the matrix. Unlike LU factorization, the Cholesky factorization
never requires that we do any pivoting — a topic we turn to next.

Pivoting

In a first linear algebra class, we learn that we need row permutations to be able to solve
systems with matrices like
0 1
A =

We cannot substract a multiple of the first row from the second row in order to put a zero
into the (2,1) slot; if we try to apply the standard algorithm, we run into division by zero.
Everything works fine if we swap the two rows and factor

11 01
PA= [O 1], p- [1 0].
What happens if we replace the zero with something tiny? That is, consider now the factorization
of
0 1
=[]

where ¢ is nonzero but tiny (less than €.,). In this case, we don’t need to pivot to compute
an LU factorization in exact arithmetic:

R T R

However, even if § and 6! are exactly representable in floating point, 1 — 6~ will round to

—6 1 and
1 o6 1 7] [1
o~ 1110 =5t T |1 0|

That is, a small relative error due to rounding the entries of U leads to an enormous relative
error in A. The problem, fundamentally, is that we have allowed the entries of L and U to get
absolutely enormous, much larger than the entries of A, setting ourselves up for small errors in
the coefficients of those matrices to be enormous relative to A. To (mostly) fix this problem,
we will turn in the next lecture to Gaussian elimination with partial pivoting (GEPP).

	LU, take 2
	Take 1: Right-looking LU
	Take 1: Left-looking LU

	General blocking
	Sherman-Morrison
	Cholesky factorization
	Pivoting

