
CS 4220: Numerical Analysis
Gaussian elimination

David Bindel

2026-02-06

Introduction

For the next few lectures, we will build tools to solve linear systems. Our main tool will be the
factorization 𝑃𝐴 = 𝐿𝑈, where 𝑃 is a permutation, 𝐿 is a unit lower triangular matrix, and 𝑈
is an upper triangular matrix. As we will see, the Gaussian elimination algorithm learned in a
first linear algebra class implicitly computes this decomposition; but by thinking about the
decomposition explicitly, we find other ways to organize the computation.

Triangular solves

Suppose that we have computed a factorization 𝑃𝐴 = 𝐿𝑈. How can we use this to solve a
linear system of the form 𝐴𝑥 = 𝑏? Permuting the rows of 𝐴 and 𝑏, we have

𝑃𝐴𝑥 = 𝐿𝑈𝑥 = 𝑃𝑏,

and therefore
𝑥 = 𝑈−1𝐿−1𝑃𝑏.

So we can reduce the problem of finding 𝑥 to two simpler problems:

1. Solve 𝐿𝑦 = 𝑃𝑏

2. Solve 𝑈𝑥 = 𝑦

We assume the matrix 𝐿 is unit lower triangular (diagonal of all ones + lower triangular),
and 𝑈 is upper triangular, so we can solve linear systems with 𝐿 and 𝑈 involving forward and
backward substitution.

1

As a concrete example, suppose

𝐿 = ⎡⎢
⎣

1 0 0
2 1 0
3 2 1

⎤⎥
⎦

, 𝑑 = ⎡⎢
⎣

1
1
3
⎤⎥
⎦

To solve a linear system of the form 𝐿𝑦 = 𝑑, we process each row in turn to find the value of
the corresponding entry of 𝑦:

1. Row 1: 𝑦1 = 𝑑1

2. Row 2: 2𝑦1 + 𝑦2 = 𝑑2, or 𝑦2 = 𝑑2 − 2𝑦1

3. Row 3: 3𝑦1 + 2𝑦2 + 𝑦3 = 𝑑3, or 𝑦3 = 𝑑3 − 3𝑦1 − 2𝑦2

More generally, the forward substitution algorithm for solving unit lower triangular linear
systems 𝐿𝑦 = 𝑑 looks like

function forward_subst_unit(L, d)

y = copy(d)

n = length(d)

for i = 2:n

y[i] = d[i] - L[i,1:i-1]'*y[1:i-1]

end

y

end

Similarly, there is a backward substitution algorithm for solving upper triangular linear systems
𝑈𝑥 = 𝑑

function backward_subst(U, d)

x = copy(d)

n = length(d)

for i = n:-1:1

x[i] = (d[i] - U[i,i+1:n]'*x[i+1:n])/U[i,i]

end

x

end

Each of these algorithms takes 𝑂(𝑛2) time.

2

Gaussian elimination by example

Let’s start our discussion of 𝐿𝑈 factorization by working through these ideas with a concrete
example:

𝐴 = ⎡⎢
⎣

1 4 7
2 5 8
3 6 10

⎤⎥
⎦

.

To eliminate the subdiagonal entries 𝑎21 and 𝑎31, we subtract twice the first row from the
second row, and thrice the first row from the third row:

𝐴(1) = ⎡⎢
⎣

1 4 7
2 5 8
3 6 10

⎤⎥
⎦

− ⎡⎢
⎣

0 ⋅ 1 0 ⋅ 4 0 ⋅ 7
2 ⋅ 1 2 ⋅ 4 2 ⋅ 7
3 ⋅ 1 3 ⋅ 4 3 ⋅ 7

⎤⎥
⎦

= ⎡⎢
⎣

1 4 7
0 −3 −6
0 −6 −11

⎤⎥
⎦

.

That is, the step comes from a rank-1 update to the matrix:

𝐴(1) = 𝐴 − ⎡⎢
⎣

0
2
3
⎤⎥
⎦

[1 4 7] .

Another way to think of this step is as a linear transformation 𝐴(1) = 𝑀1𝐴, where the rows
of 𝑀1 describe the multiples of rows of the original matrix that go into rows of the updated
matrix:

𝑀1 = ⎡⎢
⎣

1 0 0
−2 1 0
−3 0 1

⎤⎥
⎦

= 𝐼 − ⎡⎢
⎣

0
2
3
⎤⎥
⎦

[1 0 0] = 𝐼 − 𝜏1𝑒𝑇
1 .

Similarly, in the second step of the algorithm, we subtract twice the second row from the third
row:

⎡⎢
⎣

1 4 7
0 −3 −6
0 0 1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 1 0
0 −2 1

⎤⎥
⎦

⎡⎢
⎣

1 4 7
0 −3 −6
0 −6 −11

⎤⎥
⎦

= ⎛⎜
⎝

𝐼 − ⎡⎢
⎣

0
0
2
⎤⎥
⎦

[0 1 0]⎞⎟
⎠

𝐴(1).

More compactly: 𝑈 = (𝐼 − 𝜏2𝑒𝑇
2)𝐴(1).

Putting everything together, we have computed

𝑈 = (𝐼 − 𝜏2𝑒𝑇
2)(𝐼 − 𝜏1𝑒𝑇

1)𝐴.

Therefore,
𝐴 = (𝐼 − 𝜏1𝑒𝑇

1)−1(𝐼 − 𝜏2𝑒𝑇
2)−1𝑈 = 𝐿𝑈.

Now, note that

(𝐼 − 𝜏1𝑒𝑇
1)(𝐼 + 𝜏1𝑒𝑇

1) = 𝐼 − 𝜏1𝑒𝑇
1 + 𝜏1𝑒𝑇

1 − 𝜏1𝑒𝑇
1 𝜏1𝑒𝑇

1 = 𝐼,

3

since 𝑒𝑇
1 𝜏1 (the first entry of 𝜏1) is zero. Therefore,

(𝐼 − 𝜏1𝑒𝑇
1)−1 = (𝐼 + 𝜏1𝑒𝑇

1)

Similarly,
(𝐼 − 𝜏2𝑒𝑇

2)−1 = (𝐼 + 𝜏2𝑒𝑇
2)

Thus,
𝐿 = (𝐼 + 𝜏1𝑒𝑇

1)(𝐼 + 𝜏2𝑒𝑇
2).

Now, note that because 𝜏2 is only nonzero in the third element, 𝑒𝑇
1 𝜏2 = 0; thus,

𝐿 = (𝐼 + 𝜏1𝑒𝑇
1)(𝐼 + 𝜏2𝑒𝑇

2)
= (𝐼 + 𝜏1𝑒𝑇

1 + 𝜏2𝑒𝑇
2 + 𝜏1(𝑒𝑇

1 𝜏2)𝑒𝑇
2

= 𝐼 + 𝜏1𝑒𝑇
1 + 𝜏2𝑒𝑇

2

= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

+ ⎡⎢
⎣

0 0 0
2 0 0
3 0 0

⎤⎥
⎦

+ ⎡⎢
⎣

0 0 0
0 0 0
0 2 0

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
2 1 0
3 2 1

⎤⎥
⎦

.

The final factorization is

𝐴 = ⎡⎢
⎣

1 4 7
2 5 8
3 6 10

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
2 1 0
3 2 1

⎤⎥
⎦

⎡⎢
⎣

1 4 7
0 −3 −6
0 0 1

⎤⎥
⎦

= 𝐿𝑈.

The subdiagonal elements of 𝐿 are easy to read off: for 𝑖 > 𝑗, 𝑙𝑖𝑗 is the multiple of row 𝑗 that we
subtract from row 𝑖 during elimination. This means that it is easy to read off the subdiagonal
entries of 𝐿 during the elimination process.

Basic LU factorization

Let’s generalize our previous algorithm and write a simple code for 𝐿𝑈 factorization. We
will leave the issue of pivoting to a later discussion. We’ll start with a purely loop-based
implementation:

#

Overwrites a copy of A with L and U

#

function my_lu(A)

A = copy(A)

m, n = size(A)

L = UnitLowerTriangular(A) # View on A for tracking multipliers

4

U = UpperTriangular(A) # Upper triangular view on A

for j = 1:n-1

for i = j+1:n

Figure out multiple of row j to subtract from row i

L[i,j] = A[i,j]/A[j,j]

Subtract off the appropriate multiple

for k = j+1:n

A[i,k] -= L[i,j]*A[j,k]

end

end

end

L, U

end

We can write the two innermost loops more concisely in terms of a Gauss transformation
𝑀𝑗 = 𝐼 − 𝜏𝑗𝑒𝑇

𝑗 , where 𝜏𝑗 is the vector of multipliers that appear when eliminating in column
𝑗:

#

Overwrites a copy of A with L and U

#

function my_lu2(A)

A = copy(A)

m, n = size(A)

L = UnitLowerTriangular(A) # View on A for tracking multipliers

U = UpperTriangular(A) # Upper triangular view on A

for j = 1:n-1

Form vector of multipliers

L[j+1:n,j] ./= A[j,j]

Apply Gauss transformation

A[j+1:n,j+1:n] -= L[j+1:n,j]*A[j,j+1:n]'

end

5

L, U

end

Problems to ponder

1. What is the complexity of the Gaussian elimination algorithm?

2. Describe how to find 𝐴−1 using Gaussian elimination. Compare the cost of solving a linear
system by computing and multiplying by 𝐴−1 to the cost of doing Gaussian elimination
and two triangular solves.

3. Consider a parallelipiped in ℝ3 whose sides are given by the columns of a 3-by-3 matrix 𝐴.
Interpret 𝐿𝑈 factorization geometrically, thinking of Gauss transformations as shearing
operations. Using the fact that shear transformations preserve volume, give a simple
expression for tne volume of the parallelipiped.

6

	Introduction
	Triangular solves
	Gaussian elimination by example
	Basic LU factorization
	Problems to ponder

