CS 4220: Numerical Analysis

Gaussian elimination

David Bindel
2026-02-06

Introduction

For the next few lectures, we will build tools to solve linear systems. Our main tool will be the
factorization PA = LU, where P is a permutation, L is a unit lower triangular matrix, and U
is an upper triangular matrix. As we will see, the Gaussian elimination algorithm learned in a
first linear algebra class implicitly computes this decomposition; but by thinking about the
decomposition explicitly, we find other ways to organize the computation.

Triangular solves

Suppose that we have computed a factorization PA = LU. How can we use this to solve a
linear system of the form Ax = b7 Permuting the rows of A and b, we have

PAx = LUz = Pb,

and therefore
x=U"1L"1Pp.

So we can reduce the problem of finding x to two simpler problems:

1. Solve Ly = Pb
2. Solve Uz =y

We assume the matrix L is unit lower triangular (diagonal of all ones + lower triangular),
and U is upper triangular, so we can solve linear systems with L and U involving forward and
backward substitution.

As a concrete example, suppose

100 1
L=12 1 0|, d=|1
321 3

To solve a linear system of the form Ly = d, we process each row in turn to find the value of
the corresponding entry of y:

1. ROW 1: yl == dl
2. Row 2: 2y; +yy = d,y, or yy = dy — 2y
3. Row 3: Syl + 2y2 + Yz = d37 or ys = d3 - Syl - 2y2

More generally, the forward substitution algorithm for solving unit lower triangular linear
systems Ly = d looks like

function forward subst unit(L, d)
y = copy(d)
n = length(d)
for i = 2:n
y[i] = d[i] - L[i,1:i-1]"'*y[1l:i-1]
end

y
end

Similarly, there is a backward substitution algorithm for solving upper triangular linear systems
Uz =d

function backward subst(U, d)
x = copy(d)
n length(d)
for i = n:-1:1
x[1i] = (d[i] - U[4i,i+1:n]'*x[i+1:n])/U[i,i]

end

end

Each of these algorithms takes O(n?) time.

Gaussian elimination by example
Let’s start our discussion of LU factorization by working through these ideas with a concrete
example:

1 4 7

2 5 8.

3 6 10

A=

To eliminate the subdiagonal entries ay; and as;, we subtract twice the first row from the
second row, and thrice the first row from the third row:

1 4 7 0-1 0-4 0-7 1 4 7
AV =12 5 8| —-12:1 2.4 2.71=10 -3 —6|.
3 6 10 3-1 3-4 3-7 0 —6 —11

That is, the step comes from a rank-1 update to the matrix:

0
2
3

AV =4 — 14 7).

Another way to think of this step is as a linear transformation A" = M, A, where the rows
of M, describe the multiples of rows of the original matrix that go into rows of the updated

matrix:
1 00 0
My=|-2 10 =I—1|2|[1 0 0]=1—re].

-3 0 1 3

Similarly, in the second step of the algorithm, we subtract twice the second row from the third

row:
1 4 7 1 0 01 4 7 0
0 =3 —6|/=10 1 0||0 =3 —6|=[I—1|0l[0 1 0]]|AW.
0 0 1 0 —2 1] [0 —6 —11 2

More compactly: U = (I — rpel) A,
Putting everything together, we have computed
U= (I—mel)(I—7el)A.

Therefore,
A= (T —7e) 1T —7ed)"1U = LU.

Now, note that

T ™ _ T T T T _
(I —7e1)(I+me))=1—m1e] +1€] —Tye1Te; =1,

since el 7, (the first entry of 7;) is zero. Therefore,
(I —mel) ' = +mef)

Similarly,
(I —ye3)~" = (I + 7ye3)

Thus,
L= (I+7el)(I+med).

Now, note that because 7, is only nonzero in the third element, efr, = 0; thus,

L=+ 7meh)(I+mel)
= (I +1ef +myed +7i(efry)ed

1 00 0 00 0 00 1 00
=(0 1 0]{+(2 0 O0|+(0 0 O]=1{2 1 0].
0 01 300 020 3 21

The final factorization is

A=

1 4 7 10 0]([1 4 7
25 8|=1]2 100 =3 —6|=LU.
3 6 10 3 2 110 0 1

The subdiagonal elements of L are easy to read off: for ¢ > j, [;; is the multiple of row j that we
subtract from row ¢ during elimination. This means that it is easy to read off the subdiagonal
entries of L during the elimination process.

Basic LU factorization

Let’s generalize our previous algorithm and write a simple code for LU factorization. We
will leave the issue of pivoting to a later discussion. We’ll start with a purely loop-based
implementation:

#

Overwrites a copy of A with L and U
#

function my lu(A)

A = copy(A)
m, n = size(A)
L = UnitLowerTriangular(A) # View on A for tracking multipliers

U = UpperTriangular(A) # Upper triangular view on A

for j = 1:n-1
for i = j+l:n

Figure out multiple of row j to subtract from row i

Subtract off the appropriate multiple
for k = j+1:n
A[i,k] -= L[1i,j]*A[],K]
end
end
end

L, U
end

We can write the two innermost loops more concisely in terms of a Gauss transformation
M;,=1- TjeT where 7, is the vector of multipliers that appear when eliminating in column

i Jo J

7

#

Overwrites a copy of A with L and U
#

function my lu2(A)

A = copy(A)

m, n = size(A)

L = UnitLowerTriangular(A) # View on A for tracking multipliers
U = UpperTriangular(A) # Upper triangular view on A

for j = 1:n-1

Form vector of multipliers
L[j+1:n1j] /= A[JIJ]

Apply Gauss transformation
A[j+1:n,j+1:n] -= L[j+1:n,jI1*A[j,j+1:n]"

end

end

Problems to ponder

1. What is the complexity of the Gaussian elimination algorithm?

2. Describe how to find A~! using Gaussian elimination. Compare the cost of solving a linear
system by computing and multiplying by A~! to the cost of doing Gaussian elimination
and two triangular solves.

3. Consider a parallelipiped in R? whose sides are given by the columns of a 3-by-3 matrix A.
Interpret LU factorization geometrically, thinking of Gauss transformations as shearing
operations. Using the fact that shear transformations preserve volume, give a simple
expression for tne volume of the parallelipiped.

	Introduction
	Triangular solves
	Gaussian elimination by example
	Basic LU factorization
	Problems to ponder

