
CS 4220: Numerical Analysis
Sums, dots, and triangular solves

David Bindel

2026-02-04

Sums and dots

We already described a couple of floating point examples that involve evaluation of a fixed
formula (e.g. computation of the roots of a quadratic). We now turn to the analysis of some of
the building blocks for linear algebraic computations: sums and dot products.

Sums two ways

As an example of first-order error analysis, consider the following code to compute a sum of
the entries of a vector 𝑣:

function mysum(v :: AbstractVector{T}) where {T}

s = zero(T)

for vk = v

s += vk

end

s

end

Let ̂𝑠𝑘 denote the computed sum at step 𝑘 of the loop; then we have

̂𝑠1 = 𝑣1

̂𝑠𝑘 = (̂𝑠𝑘−1 + 𝑣𝑘)(1 + 𝛿𝑘), 𝑘 > 1.

Running this forward gives

̂𝑠2 = (𝑣1 + 𝑣2)(1 + 𝛿2)
̂𝑠3 = ((𝑣1 + 𝑣2)(1 + 𝛿2) + 𝑣3)(1 + 𝛿2)

1

and so on. Using first-order analysis, we have

̂𝑠𝑘 ≈ (𝑣1 + 𝑣2) (1 +
𝑘

∑
𝑗=2

𝛿𝑗) +
𝑘

∑
𝑙=3

𝑣𝑙 (1 +
𝑘

∑
𝑗=𝑙

𝛿𝑗) ,

and the difference between ̂𝑠𝑘 and the exact partial sum is then

̂𝑠𝑘 − 𝑠𝑘 ≈
𝑘

∑
𝑗=2

𝑠𝑗𝛿𝑗.

Using ‖𝑣‖1 as a uniform bound on all the partial sums, we have

| ̂𝑠𝑛 − 𝑠𝑛| ≲ (𝑛 − 1)𝜖mach‖𝑣‖2.

An alternate analysis, which is a useful prelude to analyses to come, involves writing an error
recurrence. Taking the difference between ̂𝑠𝑘 and the true partial sums 𝑠𝑘, we have

𝑒1 = 0
𝑒𝑘 = ̂𝑠𝑘 − 𝑠𝑘

= (̂𝑠𝑘−1 + 𝑣𝑘)(1 + 𝛿𝑘) − (𝑠𝑘−1 + 𝑣𝑘)
= 𝑒𝑘−1 + (̂𝑠𝑘−1 + 𝑣𝑘)𝛿𝑘,

and ̂𝑠𝑘−1 + 𝑣𝑘 = 𝑠𝑘 + 𝑂(𝜖mach), so that

|𝑒𝑘| ≤ |𝑒𝑘−1| + |𝑠𝑘|𝜖mach + 𝑂(𝜖2
mach).

Therefore,
|𝑒𝑛| ≲ (𝑛 − 1)𝜖mach‖𝑣‖1,

which is the same bound we had before.

Backward error analysis for sums

In the previous subsection, we showed an error analysis for partial sums leading to the
expression:

̂𝑠𝑛 ≈ (𝑣1 + 𝑣2) (1 +
𝑛

∑
𝑗=2

𝛿𝑗) +
𝑛

∑
𝑙=3

𝑣𝑙 (1 +
𝑛

∑
𝑗=𝑙

𝛿𝑗) .

We then proceded to aggregate all the rounding error terms in order to estimate the error
overall. As an alternative to aggregating the roundoff, we can also treat the rounding errors as
perturbations to the input variables (the entries of 𝑣); that is, we write the computed sum as

̂𝑠𝑛 =
𝑛

∑
𝑗=1

̂𝑣𝑗

2

where
̂𝑣𝑗 = 𝑣𝑗(1 + 𝜂𝑗), where |𝜂𝑗| ≲ (𝑛 + 1 − 𝑗)𝜖mach.

This gives us a backward error formulation of the rounding: we have re-cast the role of rounding
error in terms of a perturbation to the input vector 𝑣. In terms of the 1-norm, we have the
relative error bound

‖ ̂𝑣 − 𝑣‖1 ≲ 𝑛𝜖mach‖𝑣‖1;

or we can replace 𝑛 with 𝑛 − 1 by being a little more careful. Either way, what we have
shown is that the summation algorithm is backward stable, i.e. we can ascribe the roundoff to a
(normwise) small relative error with a bound of 𝐶𝜖mach where the constant 𝐶 depends on the
size 𝑛 like some low-degree polynomial.

Once we have a bound on the backward error, we can bound the forward error via a condition
number. That is, suppose we write the true and perturbed sums as

𝑠 =
𝑛

∑
𝑗=1

𝑣𝑗 ̂𝑠 =
𝑛

∑
𝑗=1

̂𝑣𝑗.

We want to know the relative error in ̂𝑠 via a normwise relative error bound in ̂𝑣, which we can
write as

| ̂𝑠 − 𝑠|
|𝑠|

=
| ∑𝑛

𝑗=1(̂𝑣𝑗 − 𝑣𝑗)|
|𝑠|

≤ ‖ ̂𝑣 − 𝑣‖1
|𝑠|

= ‖𝑣‖1
|𝑠|

‖ ̂𝑣 − 𝑣‖1
‖𝑣‖1

.

That is, ‖𝑣‖1/|𝑠| is the condition number for the summation problem, and our backward stability
analysis implies

| ̂𝑠 − 𝑠|
|𝑠|

≤ ‖𝑣‖1
|𝑠|

𝑛𝜖mach.

This is the general pattern we will see again in the future: our analysis consists of a backward
error computation that depends purely on the algorithm, together with a condition number
that depends purely on the problem. Together, these give us forward error bounds.

Running error bounds for sums

In all the analysis of summation we have done so far, we ultimately simplified our formulas by
bounding some quantity in terms of ‖𝑣‖1. This is nice for algebra, but we lose some precision
in the process. An alternative is to compute a running error bound, i.e. augment the original
calculation with something that keeps track of the error estimates. We have already seen that
the error in the computations looks like

̂𝑠𝑛 − 𝑠𝑛 =
𝑛

∑
𝑗=2

𝑠𝑗𝛿𝑗 + 𝑂(𝜖2
mach),

3

and since 𝑠𝑗 and ̂𝑠𝑗 differ only by 𝑂(𝜖mach) terms,

| ̂𝑠𝑛 − 𝑠𝑛| ≲
𝑛

∑
𝑗=2

| ̂𝑠𝑗|𝜖mach + 𝑂(𝜖2
mach),

We are not worried about doing a rounding error analysis of our rounding error analysis — in
general, we care more about order of magnitude for rounding error anyhow — so the following
routine does an adequate job of computing an (approximate) upper bound on the error in the
summation:

function mysum(v :: AbstractVector{T}) where {T}

s = zero(T)

e = zero(T)

for vk = v

s += vk

e += abs(s) * eps(T)

end

s, e

end

Compensated summation

We conclude our discussion of rounding analysis for summation with a comment on the
compensated summation algorithm of Kahan, which is not amenable to straightforward 1 + 𝛿
analysis. The algorithm maintains the partial sums not as a single variable s, but as an
unevaluated sum of two variables s and c:

function mycsum(v :: AbstractVector{T}) where {T}

s = zero(T)

c = zero(T)

for vk = v

y = vk-c

t = s+y

c = (t-s)-y # Key step

s = t

end

c + s

end

mycsum (generic function with 1 method)

4

Where the error bound for ordinary summation is (𝑛 − 1)𝜖mach‖𝑣‖1 + 𝑂(𝜖2
mach), the error bound

for compensated summation is 2𝜖mach‖𝑣‖1 + 𝑂(𝜖2
mach). Moreover, compensated summation is

exact for adding up to 2𝑘 terms that are within about 2𝑝−𝑘 of each other in magnitude.

Nor is Kahan’s algorithm the end of the story! Higham’s Accuracy and Stability of Numerical
Methods devotes an entire chapter to summation methods, and there continue to be papers
written on the topic. For our purposes, though, we will wrap up here with two observations:

• Our initial analysis in the 1 + 𝛿 model illustrates the general shape these types of analyses
take and how we can re-cast the effect of rounding errors as a “backward error” that
perturbs the inputs to an exact problem.

• The existence of algorithms like Kahan’s compensated summation method should indicate
that the backward-error-and-conditioning approach to rounding analysis is hardly the
end of the story. One could argue it is hardly the beginning! But it is the approach we
will be using for most of the class.

Dot products

We now consider another example, this time involving a real dot product computed by a loop
of the form

dot(x,y) = sum(xk*yk for (xk,yk) in zip(x,y))

Unlike the simple summation we analyzed above, the dot product involves two different sources
of rounding errors: one from the summation, and one from the product. As in the case of
simple summations, it is convenient to re-cast this error in terms of perturbations to the input.
We could do this all in one go, but since we have already spent so much time on summation,
let us instead do it in two steps. Let 𝑣𝑘 = 𝑥𝑘𝑦𝑘; in floating point, we get ̂𝑣𝑘 = 𝑣𝑘(1 + 𝜂𝑘) where
|𝜂𝑘| < 𝜖mach. Further, we have already done a backward error analysis of summation to show
that the additional error in summation can be cast onto the summands, i.e. the floating point
result is ∑𝑘 ̃𝑣𝑘 where

̃𝑣𝑘 = ̂𝑣𝑘(1 +
𝑛

∑
𝑗=min(2,𝑛)

𝛿𝑗)(1 + 𝜂𝑘) + 𝑂(𝜖2
mach)

= 𝑣𝑘(1 + 𝛾𝑘) + 𝑂(𝜖2
mach)

where
|𝛾𝑘| = |𝜂𝑘 +

𝑛
∑

𝑗=min(2,𝑛)
𝛿𝑗| ≤ 𝑛𝜖mach.

Rewriting 𝑣𝑘(1 + 𝛾𝑘) as ̂𝑥𝑘𝑦𝑘 where ̂𝑥𝑘 = 𝑥𝑘(1 + 𝛾𝑘), we have that the computed inner product
𝑦𝑇𝑥 is equivalent to the exact inner product of 𝑦𝑇 ̂𝑥 where ̂𝑥 is an elementwise relatively accurate
(to within 𝑛𝜖mach + 𝑂(𝜖2

mach)) approximation to 𝑥.

5

A similar backward error analysis shows that computed matrix-vector products 𝐴𝑏 in general
can be interpreted as ̂𝐴𝑏 where

| ̂𝐴 − 𝐴| < 𝑝𝜖mach|𝐴| + 𝑂(𝜖2
mach)

and 𝑝 is the inner dimension of the product. Exactly what ̂𝐴 is depends not only on the data,
but also the loop order used in the multiply — since, as we recall, the order of accumulation
may vary from machine to machine depending on what blocking is best suited to the cache! But
the bound on the backward error holds for all the common re-ordering1 And this backward error
characterization, together with the type of sensitivity analysis for matrix multiplication that
we have already discussed, gives us a uniform framework for obtaining forward error bounds
for matrix-matrix muliplication; and the same type of analysis will continue to dominate our
discussion of rounding errors as we move on to more complicated matrix computations.

Back-substitution

We now consider the floating point analysis of a standard back-substitution algorithm for solving
an upper triangular system

𝑈𝑦 = 𝑏.

To solve such a linear system, we process each row in turn in reverse order to find the value of
the corresponding entry of 𝑦. For example, for the 3-by-3 case with

𝑈 = ⎡⎢
⎣

1 3 5
4 2

6
⎤⎥
⎦

, 𝑏 = ⎡⎢
⎣

1
−12
12

⎤⎥
⎦

.

Back substitution proceeds row-by-row:

• 6𝑦3 = 12 (so 𝑦3 = 12/2 = 2)
• 4𝑦2 + 2𝑦3 = −12 (so 𝑦2 = (−12 − 2𝑦3)/4 = −4)
• 𝑦1 + 3𝑦2 + 5𝑦3 = 1 (so 𝑦1 = (1 − 3𝑦2 − 5𝑦3)/1 = 3)

More generally, we have

𝑦𝑖 = (𝑏𝑖 − ∑
𝑗>𝑖

𝑢𝑖𝑗𝑦𝑗) /𝑢𝑖𝑖.

In code, if we weren’t inclined to just write y=U\b, we might write this as

1For those of you who know about Strassen’s algorithm — it’s not backward stable, alas.

6

function my_backsub(U, b)

y = copy(b)

m, n = size(U)

for i = n:-1:1

for j = i+1:n

y[i] -= U[i,j]*y[j]

end

y[i] /= U[i,i]

end

y

end

If we evaluate this in floating point arithmetic as a dot product, subtraction, and division, we
get that

̂𝑦𝑖 = (𝑏𝑖 − ∑
𝑗>𝑖

𝑢̂𝑖𝑗 ̂𝑦𝑗) /𝑢𝑖𝑖 ⋅ (1 + 𝛿1)(1 + 𝛿2)

where the ̂𝑦𝑗 terms are the previously-computed entries in the 𝑦 vector, the 𝑢̂𝑖𝑗 terms are the
𝑢𝑖𝑗 with a (𝑛 − 𝑖 − 1)𝜖mach backward error modification from the dot product, the 𝛿1 error is
associated with the subtraction and the 𝛿2 error is associated with the division. This in turn
gives us that

̂𝑦𝑖 = (𝑏𝑖 − ∑
𝑗>𝑖

𝑢̂𝑖𝑗 ̂𝑦𝑗) /𝑢̂𝑖𝑖

where
𝑢̂𝑖𝑖 = 𝑢𝑖𝑖

(1 + 𝛿1)(1 + 𝛿2)
= 𝑢𝑖𝑖(1 − 𝛿1 − 𝛿2 + 𝑂(𝜖2

mach)).

That is, we can recast the final subtraction and division as a relative perturbation of ≲ 2𝜖mach
to the diagonal. Putting everything together, we have that

̂𝑈 ̂𝑦 = 𝑏

where | ̂𝑈 − 𝑈| ≲ 𝑛𝜖mach|𝑈|.

7

	Sums and dots
	Sums two ways
	Backward error analysis for sums
	Running error bounds for sums
	Compensated summation
	Dot products
	Back-substitution

