
CS 4220: Numerical Analysis
Neumann series, sensitivity, conditioning

David Bindel

2026-01-30

Norms revisited

Earlier, we discussed norms, including induced norms: if 𝐴 maps between two normed vector
spaces 𝒱 and 𝒲, the induced norm on 𝐴 is

‖𝐴‖𝒱,𝒲 = sup
𝑣≠0

‖𝐴𝑣‖𝒲
‖𝑣‖𝒱

= sup
‖𝑣‖𝒱=1

‖𝐴𝑣‖𝒲.

When 𝒱 is finite-dimensional (as it always is in this class), the unit ball {𝑣 ∈ 𝒱 ∶ ‖𝑣‖ = 1} is
compact, and ‖𝐴𝑣‖ is a continuous function of 𝑣, so the supremum is actually attained. Induced
norms have a number of nice properties, not the least of which are the submultiplicative
properties

‖𝐴𝑣‖ ≤ ‖𝐴‖‖𝑣‖
‖𝐴𝐵‖ ≤ ‖𝐴‖‖𝐵‖.

The first property (‖𝐴𝑣‖ ≤ ‖𝐴‖‖𝑣‖) is clear from the definition of the vector norm. The second
property is almost as easy to prove:

‖𝐴𝐵‖ = max
‖𝑣‖=1

‖𝐴𝐵𝑣‖ ≤ max
‖𝑣‖=1

‖𝐴‖‖𝐵𝑣‖ = ‖𝐴‖‖𝐵‖.

The matrix norms induced when 𝒱 and 𝒲 are supplied with a 1-norm, 2-norm, or ∞-norm are
simply called the matrix 1-norm, 2-norm, and ∞-norm. The matrix 1-norm and ∞-norm are
given by

‖𝐴‖1 = max
𝑗

∑
𝑖

|𝑎𝑖𝑗|

‖𝐴‖∞ = max
𝑖

∑
𝑗

|𝑎𝑖𝑗|.

These norms are nice because they are easy to compute; the two norm is nice for other reasons,
but is not easy to compute.

1

Norms and Neumann series

We will do a great deal of operator norm manipulation this semester, almost all of which boils
down to repeated use of the triangle inequality and the submultiplicative property. For now, we
illustrate the point by a simple, useful example: the matrix version of the geometric series.

Suppose 𝐹 is a square matrix such that ‖𝐹‖ < 1 in some operator norm, and consider the power
series 𝑛

∑
𝑗=0

𝐹 𝑗.

Note that ‖𝐹 𝑗‖ ≤ ‖𝐹‖𝑗 via the submultiplicative property of induced operator norms. By the
triangle inequality, the partial sums satisfy

(𝐼 − 𝐹)
𝑛

∑
𝑗=0

𝐹 𝑗 = 𝐼 − 𝐹 𝑛+1.

Hence, we have that

‖(𝐼 − 𝐹)
𝑛

∑
𝑗=0

𝐹 𝑗 − 𝐼‖ ≤ ‖𝐹‖𝑛+1 → 0 as 𝑛 → ∞,

i.e. 𝐼 − 𝐹 is invertible and the inverse is given by the convergent power series (the geometric
series or Neumann series)

(𝐼 − 𝐹)−1 =
∞

∑
𝑗=0

𝐹 𝑗.

By applying submultiplicativity and triangle inequality to the partial sums, we also find that

‖(𝐼 − 𝐹)−1‖ ≤
∞

∑
𝑗=0

‖𝐹‖𝑗 = 1
1 − ‖𝐹‖

.

Note as a consequence of the above that if ‖𝐴−1𝐸‖ < 1 then

‖(𝐴 + 𝐸)−1‖ = ‖(𝐼 + 𝐴−1𝐸)−1𝐴−1‖ ≤ ‖𝐴−1‖
1 − ‖𝐴−1𝐸‖

.

That is, the Neumann series gives us a sense of how a small perturbation to 𝐴 can change the
norm of 𝐴−1.

A matrix calculus aside

A directional derivative of a function 𝑓 ∶ ℝ𝑛 → ℝ𝑚 in the direction 𝑢 is

𝜕𝑓
𝜕𝑢

(𝑥) ≡ 𝑑
𝑑𝑠

∣
𝑠=0

𝑓(𝑥 + 𝑠𝑢) = 𝑓 ′(𝑥)𝑢.

2

A nice notational convention, sometimes called variational notation (as in “calculus of varia-
tions”) is to write

𝛿𝑓 = 𝑓 ′(𝑥)𝛿𝑢,

where 𝛿 should be interpreted as “first order change in.” You can also always rewrite these
expressions as derivatives with respect to some scalar parameter 𝑠 (as is done in the definition).
In introductory calculus classes, this sometimes is called a total derivative or total differential,
though there one usually uses 𝑑 rather than 𝛿. There is a good reason for using 𝛿 in the calculus
of variations, though, so that’s typically what I do.

Variational notation can tremendously simplify the calculus book-keeping for dealing with
multivariate functions. For example, consider the problem of differentiating 𝐴−1 with respect
to every element of 𝐴. I would compute this by thinking of the relation between a first-order
change to 𝐴−1 (written 𝛿[𝐴−1]) and a corresponding first-order change to 𝐴 (written 𝛿𝐴).
Using the product rule and differentiating the relation 𝐼 = 𝐴−1𝐴, we have

0 = 𝛿[𝐴−1𝐴] = 𝛿[𝐴−1]𝐴 + 𝐴−1𝛿𝐴.

Rearranging a bit gives
𝛿[𝐴−1] = −𝐴−1[𝛿𝐴]𝐴−1.

One can do this computation element by element, but it’s harder to do it without the compu-
tation becoming horrible.

The 2-norm

The matrix 2-norm is very useful, but it is also not so straightforward to compute. Last time,
we showed how to think about computing ‖𝐴‖2 via the SVD. We now take a different tack,
foreshadowing topics to come in the class. I will likely not talk about this in lecture, but I
think it is worth mentioning in the notes.

If 𝐴 is a real matrix, then we have

‖𝐴‖2
2 = (max

‖𝑣‖2=1
‖𝐴𝑣‖)

2

= max
‖𝑣‖2

2=1
‖𝐴𝑣‖2

= max
𝑣𝑇𝑣=1

𝑣𝑇𝐴𝑇𝐴𝑣.

This is a constrained optimization problem, to which we will apply the method of Lagrange
multipliers: that is, we seek critical points for the functional

𝐿(𝑣, 𝜇) = 𝑣𝑇𝐴𝑇𝐴𝑣 − 𝜇(𝑣𝑇𝑣 − 1).

3

Differentiate in an arbitrary direction (𝛿𝑣, 𝛿𝜇) to find

2𝛿𝑣𝑇(𝐴𝑇𝐴𝑣 − 𝜇𝑣) = 0,
𝛿𝜇(𝑣𝑇𝑣 − 1) = 0.

Therefore, the stationary points satisfy the eigenvalue problem

𝐴𝑇𝐴𝑣 = 𝜇𝑣.

The eigenvalues of 𝐴𝑇𝐴 are non-negative (why?), so we will call them 𝜎2
𝑖 . The positive values

𝜎𝑖 are exactly the singular values of 𝐴 — the diagonal elements of the matrix Σ in the singular
value decomposition from last lecture — and the eigenvectors of 𝐴𝑇𝐴 are the right singular
vectors (𝑉).

Notions of error

The art of numerics is finding an approximation with a fast algorithm, a form that is easy to
analyze, and an error bound. Given a task, we want to engineer an approximation that is good
enough, and that composes well with other approximations. To make these goals precise, we
need to define types of errors and error propagation, and some associated notation – which is
the point of this lecture.

Absolute and relative error

Suppose ̂𝑥 is an approximation to 𝑥. The absolute error is

𝑒abs = | ̂𝑥 − 𝑥|.

Absolute error has the same dimensions as 𝑥, and can be misleading without some context. An
error of one meter per second is dramatic if 𝑥 is my walking pace; if 𝑥 is the speed of light, it
is a very small error.

The relative error is a measure with a more natural sense of scale:

𝑒rel = | ̂𝑥 − 𝑥|
|𝑥|

.

Relative error is familiar in everyday life: when someone talks about an error of a few percent,
or says that a given measurement is good to three significant figures, she is describing a relative
error.

We sometimes estimate the relative error in approximating 𝑥 by ̂𝑥 using the relative error in
approximating ̂𝑥 by 𝑥:

̂𝑒rel = | ̂𝑥 − 𝑥|
| ̂𝑥|

.

4

As long as ̂𝑒rel < 1, a little algebra gives that

̂𝑒rel
1 + ̂𝑒rel

≤ 𝑒rel ≤ ̂𝑒rel
1 − ̂𝑒rel

.

If we know ̂𝑒rel is much less than one, then it is a good estimate for 𝑒rel. If ̂𝑒rel is not much less
than one, we know that ̂𝑥 is a poor approximation to 𝑥. Either way, ̂𝑒rel is often just as useful
as 𝑒rel, and may be easier to estimate.

Relative error makes no sense for 𝑥 = 0, and may be too pessimistic when the property of 𝑥 we
care about is “small enough.” A natural intermediate between absolute and relative errors is
the mixed error

𝑒mixed = | ̂𝑥 − 𝑥|
|𝑥| + 𝜏

where 𝜏 is some natural scale factor associated with 𝑥.

Errors beyond scalars

Absolute and relative error make sense for vectors as well as scalars. If ‖ ⋅ ‖ is a vector norm
and ̂𝑥 and 𝑥 are vectors, then the (normwise) absolute and relative errors are

𝑒abs = ‖ ̂𝑥 − 𝑥‖, 𝑒rel = ‖ ̂𝑥 − 𝑥‖
‖𝑥‖

.

We might also consider the componentwise absolute or relative errors

𝑒abs,𝑖 = | ̂𝑥𝑖 − 𝑥𝑖| 𝑒rel,𝑖 = | ̂𝑥𝑖 − 𝑥𝑖|
|𝑥𝑖|

.

The two concepts are related: the maximum componentwise relative error can be computed as
a normwise error in a norm defined in terms of the solution vector:

max
𝑖

𝑒rel,𝑖 = ‖ ̂𝑥 − 𝑥‖∗

where ‖𝑧‖∗ = ‖ diag(𝑥)−1𝑧‖. More generally, absolute error makes sense whenever we can
measure distances between the truth and the approximation; and relative error makes sense
whenever we can additionally measure the size of the truth. However, there are often many
possible notions of distance and size; and different ways to measure give different notions of
absolute and relative error. In practice, this deserves some care.

5

Forward and backward error and conditioning

We often approximate a function 𝑓 by another function ̂𝑓. For a particular 𝑥, the forward
(absolute) error is

| ̂𝑓(𝑥) − 𝑓(𝑥)|.

In words, forward error is the function output. Sometimes, though, we can think of a slightly
wrong input:

̂𝑓(𝑥) = 𝑓(̂𝑥).

In this case, |𝑥 − ̂𝑥| is called the backward error. An algorithm that always has small backward
error is backward stable.

A condition number a tight constant relating relative output error to relative input error. For
example, for the problem of evaluating a sufficiently nice function 𝑓(𝑥) where 𝑥 is the input
and ̂𝑥 = 𝑥 + ℎ is a perturbed input (relative error |ℎ|/|𝑥|), the condition number 𝜅[𝑓(𝑥)] is the
smallest constant such that

|𝑓(𝑥 + ℎ) − 𝑓(𝑥)|
|𝑓(𝑥)|

≤ 𝜅[𝑓(𝑥)] |ℎ|
|𝑥|

+ 𝑜(|ℎ|)

If 𝑓 is differentiable, the condition number is

𝜅[𝑓(𝑥)] = lim
ℎ≠0

|𝑓(𝑥 + ℎ) − 𝑓(𝑥)|/|𝑓(𝑥)|
|(𝑥 + ℎ) − 𝑥|/|𝑥|

= |𝑓 ′(𝑥)||𝑥|
|𝑓(𝑥)|

.

If 𝑓 is Lipschitz in a neighborhood of 𝑥 (locally Lipschitz), then

𝜅[𝑓(𝑥)] =
𝑀𝑓(𝑥)|𝑥|
|𝑓(𝑥)|

.

where 𝑀𝑓 is the smallest constant such that |𝑓(𝑥 + ℎ) − 𝑓(𝑥)| ≤ 𝑀𝑓|ℎ| + 𝑜(|ℎ|). When the
problem has no linear bound on the output error relative to the input error, we sat the problem
has an infinite condition number. An example is 𝑥1/3 at 𝑥 = 0.

A problem with a small condition number is called well-conditioned; a problem with a large
condition number is ill-conditioned. A backward stable algorithm applied to a well-conditioned
problem has a small forward error.

Perturbing matrix problems

To make the previous discussion concrete, suppose I want 𝑦 = 𝐴𝑥, but because of a small error
in 𝐴 (due to measurement errors or roundoff effects), I instead compute ̂𝑦 = (𝐴 + 𝐸)𝑥 where 𝐸
is “small.” The expression for the absolute error is trivial:

‖ ̂𝑦 − 𝑦‖ = ‖𝐸𝑥‖.

6

But I usually care more about the relative error :

‖ ̂𝑦 − 𝑦‖
‖𝑦‖

= ‖𝐸𝑥‖
‖𝑦‖

.

If we assume that 𝐴 is invertible and that we are using consistent norms (which we will usually
assume), then

‖𝐸𝑥‖ = ‖𝐸𝐴−1𝑦‖ ≤ ‖𝐸‖‖𝐴−1‖‖𝑦‖,

which gives us

𝑓𝑟𝑎𝑐‖ ̂𝑦 − 𝑦‖‖𝑦‖ ≤ ‖𝐴‖‖𝐴−1‖‖𝐸‖
‖𝐴‖

= 𝜅(𝐴)‖𝐸‖
‖𝐴‖

.

That is, the relative error in the output is the relative error in the input multiplied by the
condition number 𝜅(𝐴) = ‖𝐴‖‖𝐴−1‖. Technically, this is the condition number for the problem
of matrix multiplication (or solving linear systems, as we will see) with respect to a particular
(consistent) norm; different problems have different condition numbers. Nonetheless, it is
common to call this “the” condition number of 𝐴.

Dimensions and scaling

The first step in analyzing many application problems is nondimensionalization: combining
constants in the problem to obtain a small number of dimensionless constants. Examples
include the aspect ratio of a rectangle, the Reynolds number in fluid mechanics1, and so forth.
There are three big reasons to nondimensionalize:

• Typically, the physics of a problem only really depends on dimensionless constants, of
which there may be fewer than the number of dimensional constants. This is important
for parameter studies, for example.

• For multi-dimensional problems in which the unknowns have different units, it is hard
to judge an approximation error as “small” or “large,” even with a (normwise) relative
error estimate. But one can usually tell what is large or small in a non-dimensionalized
problem.

• Many physical problems have dimensionless parameters much less than one or much
greater than one, and we can approximate the physics in these limits. Often when
dimensionless constants are huge or tiny and asymptotic approximations work well, naive
numerical methods work work poorly. Hence, nondimensionalization helps us choose how
to analyze our problems — and a purely numerical approach may be silly.

1Or any of a dozen other named numbers in fluid mechanics. Fluid mechanics is a field that appreciates the
power of dimensional analysis

7

Problems to ponder

1. Show that as long as ̂𝑒rel < 1,

̂𝑒rel
1 + ̂𝑒rel

≤ 𝑒rel ≤ ̂𝑒rel
1 − ̂𝑒rel

.

2. Show that 𝐴 + 𝐸 is invertible if 𝐴 is invertible and ‖𝐸‖ < 1/‖𝐴−1‖ in some operator
norm.

3. In this problem, we will walk through an argument about the bound on the relative error
in approximating the relative error in solving a perturbed linear system: that is, how well
does ̂𝑦 = (𝐴 + 𝐸)−1𝑏 approximate 𝑦 = 𝐴−1𝑏 in a relative error sense? We will assume
throughout that ‖𝐸‖ < 𝜖 and 𝜅(𝐴)𝜖 < 1.

1. Show that ̂𝑦 = (𝐼 + 𝐴−1𝐸)𝑦.

2. Using Neumann series bounds, argue that

‖(𝐼 + 𝐴−1𝐸) − 𝐼‖ ≤ ‖𝐴−1𝐸‖
1 − ‖𝐴−1𝐸‖

3. Conclude that
‖ ̂𝑦 − 𝑦‖

‖𝑦‖
≤ 𝜅(𝐴)𝜖

1 − 𝜅(𝐴)𝜖
.

8

	Norms revisited
	Norms and Neumann series

	A matrix calculus aside
	The 2-norm

	Notions of error
	Absolute and relative error
	Errors beyond scalars
	Forward and backward error and conditioning

	Perturbing matrix problems
	Dimensions and scaling
	Problems to ponder

