
CS 4220: Numerical Analysis
Matrix manipulations

David Bindel

2026-01-23

Matrices

From your linear algebra background, you should know a matrix as a representation of a linear
map. A matrix can also represent a bilinear function mapping two vectors into the real numbers
(or complex numbers for complex vector spaces):

(𝑣, 𝑤) → 𝑤∗𝐴𝑣.

Symmetric matrices also represent quadratic forms mapping vectors to real numbers

𝜙(𝑣) = 𝑣∗𝐴𝑣.

We say a symmetric matrix 𝐴 is positive definite if the corresponding quadratic form is positive
definite, i.e.

𝑣∗𝐴𝑣 ≥ 0 with equality iff 𝑣 = 0.

We will talk more about matrices as representations of linear maps, bilinear forms, and quadratic
forms in the next lecture.

Many “rookie mistakes” in linear algebra involve forgetting ways in which matrices differ from
scalars:

• Not all matrices are square.

• Not all matrices are invertible (even nonzero matrices can be singular).

• Matrix multiplication is associative, but not commutative.

Don’t forget these facts!

In matrix computations, we deal not only with the linear algebraic perspective on a matrix, but
also with concrete representations. We usually represent a dense matrix as an array of numbers
that are stored sequentially in computer memory. But we may use different representations

1

depending on what we want to do. Often our goal is to evaluate some expression involving
a matrix, such as evaluating a linear map or a quadratic form or solving a linear system. In
these cases, we might prefer other different representations that take advantage of a particular
problem’s structure.

Twelve Commandments

When Charlie Van Loan teaches matrix computations, he states “twelve commandments” of
matrix manipulations:

1. Matrix × vector = linear combination of matrix columns.

2. Inner product = sum of products of corresponding elements.

3. Order of operations is important to performance.

4. Matrix × diagonal = scaling of the matrix columns.

5. Diagonal × matrix = scaling of the matrix rows.

6. Never form an explicit diagonal matrix.

7. Never form an explicit rank one matrix.

8. Matrix × matrix = collection of matrix-vector products.

9. Matrix × matrix = collection of dot products.

10. Matrix × matrix = sum of rank one matrices.

11. Matrix × matrix ⟹ linearly combine rows from the second matrix.

12. Matrix × matrix ⟹ linearly combine columns from the first matrix.

I might add more, but twelve is a nicer-sounding number than thirteen or fourteen, and fifteen
is clearly too many.

Block matrices

We often partition matrices into submatrices of different sizes. For example, we might write

⎡⎢
⎣

𝑎11 𝑎12 𝑏1
𝑎21 𝑎22 𝑏2
𝑐1 𝑐2 𝑑

⎤⎥
⎦

= [𝐴 𝑏
𝑐𝑇 𝑑] , where 𝐴 = [𝑎11 𝑎12

𝑎21 𝑎22
] , 𝑏 = [𝑏1

𝑏2
] , 𝑐 = [𝑐1

𝑐2
] .

We can manipulate block matrices in much the same way we manipulate ordinary matrices; we
just need to remember that matrix multiplication does not commute.

2

Standard matrices

We will see a handful of standard matrices throughout the course:

• The zero matrix (written 0 – we distinguish from the scalar zero by context). In Julia:
zeros(m,n).

• The identity matrix 𝐼. In Julia: I (or Matrix(I, n, n) in the rare cases you need a
concrete materialization).

• Diagonal matrices, usually written 𝐷. In Julia: diagm(d) where d is the vector of diagonal
entries.

• Permutation matrices, usually written 𝑃 or Π (but sometimes written 𝑄 if 𝑃 is already
used). These are square 0-1 matrices with exactly one 1 in each row and column. They
look like the identity matrix with the columns permuted. In Julia, I could write P =

Matrix(I,n,n); P = P[:,idx] where idx is an index vector such that data at index idx(k)

in a vector 𝑣 gets mapped to index k in 𝑃𝑣.

Though I have given Julia commands to construct these matrices, we usually would not actually
create them explicitly except as a step in creating another matrix (see Van Loan’s sixth
commandment!).

Matrix shapes and structures

In linear algebra, we talk about different matrix structures. For example:

• 𝐴 ∈ ℝ𝑛×𝑛 is nonsingular if the inverse exists; otherwise it is singular.

• 𝑄 ∈ ℝ𝑛×𝑛 is orthogonal if 𝑄𝑇𝑄 = 𝐼.

• 𝐴 ∈ ℝ𝑛×𝑛 is symmetric if 𝐴 = 𝐴𝑇.

• 𝑆 ∈ ℝ𝑛×𝑛 is skew-symmetric if 𝑆 = −𝑆𝑇.

• 𝐿 ∈ ℝ𝑛×𝑚 is low rank if 𝐿 = 𝑈𝑉 𝑇 for 𝑈 ∈ ℝ𝑛×𝑘 and 𝑉 ∈ ℝ𝑚×𝑘 where 𝑘 ≪ min(𝑚, 𝑛).

These are properties of an underlying linear map or quadratic form; if we write a different
matrix associated with an (appropriately restricted) change of basis, it will also have the same
properties.

In matrix computations, we also talk about the shape (nonzero structure) of a matrix. For
example:

• 𝐷 is diagonal if 𝑑𝑖𝑗 = 0 for 𝑖 ≠ 𝑗.

• 𝑇 is tridiagonal if 𝑡𝑖𝑗 = 0 for 𝑖 ∉ {𝑗 − 1, 𝑗, 𝑗 + 1}.

3

• 𝑈 is upper triangular if 𝑢𝑖𝑗 = 0 for 𝑖 > 𝑗 and strictly upper triangular if 𝑢𝑖𝑗 = 0 for 𝑖 ≥ 𝑗
(lower triangular and strictly lower triangular are similarly defined).

• 𝐻 is upper Hessenberg if ℎ𝑖𝑗 = 0 for 𝑖 > 𝑗 + 1.

• 𝐵 is banded if 𝑏𝑖𝑗 = 0 for |𝑖 − 𝑗| > 𝛽.

• 𝑆 is sparse if most of the entries are zero. The position of the nonzero entries in the
matrix is called the sparsity structure.

We often represent the shape of a matrix by marking where the nonzero elements are (usually
leaving empty space for the zero elements); for example:

Diagonal
⎡
⎢
⎢
⎢
⎣

×
×

×
×

×

⎤
⎥
⎥
⎥
⎦

Tridiagonal
⎡
⎢
⎢
⎢
⎣

× ×
× × ×

× × ×
× × ×

× ×

⎤
⎥
⎥
⎥
⎦

Triangular
⎡
⎢
⎢
⎢
⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥
⎥
⎥
⎦

Hessenberg
⎡
⎢
⎢
⎢
⎣

× × × × ×
× × × × ×

× × × ×
× × ×

× ×

⎤
⎥
⎥
⎥
⎦

We also sometimes talk about the graph of a (square) matrix 𝐴 ∈ ℝ𝑛×𝑛: if we assign a node
to each index {1, … , 𝑛}, an edge (𝑖, 𝑗) in the graph corresponds to 𝑎𝑖𝑗 ≠ 0. There is a close
connection between certain classes of graph algorithms and algorithms for factoring sparse
matrices or working with different matrix shapes. For example, the matrix 𝐴 can be permuted
so that 𝑃𝐴𝑃 𝑇 is upper triangular iff the associated directed graph is acyclic.

The shape of a matrix (or graph of a matrix) is not intrinsically associated with a more abstract
linear algebra concept; apart from permutations, sometimes, almost any change of basis will
completely destroy the shape.

Data sparsity and fast matrix-vector products

We say a matrix 𝐴 ∈ ℝ𝑛×𝑚 is data sparse if we can represent it with far fewer than 𝑛𝑚
parameters. For example,

• Sparse matrices are data sparse – we only need to explicitly know the positions and values
of the nonzero elements.

• A rank one matrix is data sparse: if we write it as an outer product 𝐴 = 𝑢𝑣𝑇, we need
only 𝑛 + 𝑚 parameters (we can actually get away with only 𝑛 + 𝑚 − 1, but usually
wouldn’t bother). More generally, low-rank matrices are data sparse.

4

• A Toeplitz matrix (constant diagonal entries) is data sparse.

• The upper or lower triangle of a low rank matrix is data sparse.

Sums and products of a few data sparse matrices will remain data sparse.

Data sparsity is useful for several reasons. If we are interested in the matrix itself, data sparsity
lets us save storage. If we are interested in multiplying by the matrix, or solving linear systems
involving the matrix, data sparsity lets us write fast algorithms. For example,

• We can multiply a sparse matrix 𝐴 times a vector in 𝑂(nnz) time in general, where nnz
is the number of nonzeros in the matrix.

• If 𝐴 = 𝑢𝑣𝑇 is rank one, we can compute 𝑦 = 𝐴𝑥 in 𝑂(𝑛 + 𝑚) time by first computing
𝛼 = 𝑣𝑇𝑥 (a dot product, 𝑂(𝑚) time), then 𝑦 = 𝛼𝑢 (a scaling of the vector 𝑢, 𝑂(𝑛) time).

• We can multiply a square Toeplitz matrix by a vector in 𝑂(𝑛 log 𝑛) time using fast Fourier
transforms.

• We can multiply the upper or lower triangle of a square low rank matrix by a vector in
𝑂(𝑛) time with a simple loop (left as an exercise).

In much modern research on numerical linear algebra, sparsity or data sparsity is the name of
the game. Few large problems are unstructured; and where there is structure, one can usually
play games with data sparsity.

5

	Matrices
	Twelve Commandments
	Block matrices
	Standard matrices
	Matrix shapes and structures
	Data sparsity and fast matrix-vector products

