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What are we about?

Welcome to “Numerical Analysis: Linear and Nonlinear Equations” (CS 4220, CS 5223, and
Math 4260). This is part of a pair of courses offered jointly between CS and math that
provide an introduction to scientific computing. My own tongue-in-cheek summary of scientific
computing is that it is the art of solving problems of continuous mathematics fast enough and
accurately enough. Of course, what constitutes “fast enough” and “accurately enough” depends
on context, and learning to reason about that context is also part of the class.

Because our survey is partitioned into two semesters, we do not cover all the standard topics in
a single semester. In particular, this class will (mostly) not cover interpolation and function
approximation, numerical differentiation and quadrature, or the solution of ordinary and partial
differential equations. We will focus instead on numerical linear algebra, nonlinear equation
solving, and optimization. Broadly speaking, we will spend the first half of the semester on
factorization methods for linear algebra problems, and the latter half on iterative methods for
both linear and nonlinear problems. As currently planned, the schedule also includes time for
one special topic week that I expect will bring together several of the themes from the course.

Learning outcomes

We are going to cover a variety of methods for a variety of problems by the end of the semester.
But the goal is that by the end of the semester, you will be able to

e Analyze sources of error in numerical algorithms and reason about problem stability
and how it influences the accuracy of numerical computations.

¢ Choose appropriate numerical algorithms to solve linear algebra problems
(linear systems, least squares problems, and eigenvalue problems) taking into account
problem structure.



¢ Formulate nonlinear equations and constrained and unconstrained optimiza-
tion problems for solution on a computer.

¢ Analyze the local convergence of nonlinear solver algorithms.
¢ Reason about global convergence of nonlinear solver algorithms.

¢« Use numerical methods to solve problems of practical interest from data science,
machine learning, and engineering.

Mathematics, Computation, Application

Our focus will be the mathematical and computational structure of numerical methods. But
we use numerical methods to solve problems from applications, and a scientific computing
class with no applications is far less rich and interesting than it ought to be. So we will, when
possible, try to bring in application examples.

The majority of students in the class come from computer science. We also have students
from a wide variety of other majors. This means that students come to the class with different
levels of background and interest in a variety of application domains. Because of the nature
of the enrollment, many of my examples will come from areas conventionally associated with
computer science and mathematics, but there will also be the odd example from physics or
engineering. So if we dig into an application problem and you get lost, don’t worry — I don’t
expect you to know this already! Also, ask questions, as there are bound to be others the class
who are equally confused.

Cross-cutting themes

There are some themes that cut across topics in the syllabus, and I expect we will touch on
these themes frequently through the semester. These include:

¢ Knowing the answer in advance — It’s dangerous to go into a computation with no
idea what to expect. The structure of the problem and the solution affect how we choose
methods and how we evaluate success. A qualitative analysis or ballpark estimate of
solution behavior is usually the first step to intelligently applying a numerical method.

¢ Pictures and plots — Careful pictures tell us a lot. Plot an approximate solution. Are
there unexpected oscillations or negative values, or crazy-looking behaviors near the
domain of the soution? Maybe you should investigate! Similarly, plots of error with
respect to a spatial variable or a step number often provide key insights into whether a
method is working as desired.



¢ Documentation, testing, and error checking — When we write numerical codes, the
implied agreement between the author of the code and the user of the code is often more
subtle than the agreements behind other software interfaces. Call a sort routine, and
it will sort your data in some specified time. Call a linear solver, and it will solve your
problem in an amount of time that depends on the problem structure and with a level of
accuracy that depends on the problem characteristics. This makes good software hygiene
— careful documentation, testing, error checking, and design for reproducibility — both
tricky and important!

¢ Modularity and composability — When we compose numerical methods, we have to
worry about error. Even if you expect only to use numerical building blocks (and never
build them yourself), it is important to understand the types of error and performance
guarantees one can make and how they are useful in reasoning about large computational
codes.

¢ Problem formulation and choice of representation — Often, the same problem
can be posed in many different ways. Some suggest simple, efficient numerical methods.
Others are impossibly hard. The key difference between the two is often in how we
represent the problem data and the thing we seek.

¢ Numerical anti-patterns — Some operations, such as computing explicit inverses and
determinants, are perfectly natural in symbolic mathematics but turn out to be terrible
ideas in numerical computations. We will point these out as we come across them.

e Time and memory scalability — We often want to solve big problems, and it is
important to understand before we start whether we think we can solve a problem on a
laptop in a second or two or if we really need a month on a supercomputer. This means
we would like a rough estimate — usually posed in terms of order notation — of the time
and memory complexity of different algorithms.

¢ Blocking and building with high-performance blocks — Building fast codes is hard.
As numerical problem solvers, we would like someone else to do much of this hard work
so that we can focus on other things. This means we need to understand the common
building blocks, and a little bit about not only their complexity, but also why they are
fast or slow on real machines.

¢ Performance tradeoffs in iterations — Iterative methods produce a sequence of
approximate solutions that (one hopes) get closer and closer to the right answer. To
choose iterations intelligently, we need to understand the tradeoffs between the time to
compute an iteration, the progress that one can make, and the overall stability of an
iterative procedure.

¢ Convergence monitoring and stopping — One of the hardest parts of designing an
iterative method is often deciding when to stop. This point will recur several times in
the second half of the semester.



¢ Use of approximations and surrogates — Simple surrogate models are an important
part of the design of nonlinear iterations. We will be particularly interested in local
polynomial approximations, but we may talk about some others as well.

Logistics

We will go through the syllabus in detail, but at a high level you should plan on six homeworks
(individual) and three projects (in pairs), a midterm, and a final. If you are taking this course
as 5223, you will also have a semester project involving choosing and implementing a numerical
method of choice from the literature. I will also ask you for feedback at the middle and end of
the semester, and this counts for credit.

Homework and projects are due via CMS by midnight on Fridays; we allow some “slip days” so
that you can work on an assignment through the weekend if needed. We will also drop the
lowest of the HW grades, in case there is a particularly hectic week. Office hours are TBD, but
we will announce them soon. You can also request office hours by appointment.

Infrastructure

Class notes and assignments, as well as class announcements, will be posted on the course
home page. For submissions, solutions, and grades, we will use CMS. For class discussion, we
will use Ed Discussions. We will use Canvas for Zoom if needed as well.

We will use Julia in our notes, and you should also use Julia for your homework. I am using the
most recent version (Julia 1.12.4), and recommend you use the same. I recommend installing
Julia on your own machine, but you are also welcome to use an online service like JuliaHub.

The course web page is maintained from a repository on GitHub. I encourage you to submit
corrections or enhancements by pull request!

Background

The formal prerequisites for the class are linear algebra at the level of Math 2210 or 2940 or
equivalent and a CS 1 course in any language. We also recommend one additional math course
at the 3000 level or above; this is essentially a proxy for “sufficient mathematical maturity.”

In practice: I will assume you know some multivariable calculus and linear algebra, and that your
CS background includes not only basic programming but also some associated mathematical
concepts (e.g. order notation and a little graph theory). If you feel your background is weak in
these areas, please talk to us.



Some of you may want to review your linear algebra basics in particular. At Cornell, our
undergraduate linear algebra course uses the text by Lay (Lay, Lay, and McDonald 2016); the
texts by Strang (Strang 2006, 2009) are a nice alternative. Strang’s Introduction to Linear
Algebra (Strang 2009) is the textbook for the MIT linear algebra course that is the basis for
his enormously popular video lectures, available on MIT’s OpenCourseWare site; if you prefer
lecture to reading, Strang is known as an excellent lecturer.

Basic notational conventions

In this section, we set out some basic notational conventions used in the class.
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. The complex unit is i (not ¢ or j).

By default, all spaces in this class are finite dimensional. If there is only one space and
the dimension is not otherwise stated, we use n to denote the dimension.

Concrete real and complex vector spaces are R” and C", respectively.
Real and complex matrix spaces are R™*™ and C™*".

Unless otherwise stated, a concrete vector is a column vector.

The vector e is the vector of all ones.

The vector e; has all zeros except a one in the ith place.

The basis {e; }?, is the standard basis in R™ or C™.

We use calligraphic math caps for abstract space, e.g. U, V, W.

When we say U is a basis for a space U, we mean U is an isomorphism R” — I/. By a

slight abuse of notation, we say U is a matrix whose columns are the abstract vectors
. . . . n .

Uy, ..., Uy, and we write the linear combination } "~  wu;c; concisely as Uc.

Similarly, U~'x represents the linear mapping from the abstract vector x to a concrete
coefficient vector ¢ such that x = Uec.

The space of univariate polynomials of degree at most d is ;.

Scalars will typically be lower case Greek, e.g. a, 5. In some cases, we will also use lower
case Roman letters, e.g. ¢, d.

Vectors (concrete or abstract) are denoted by lower case Roman, e.g. z,y, 2.
Matrices and linear maps are both denoted by upper case Roman, e.g. A, B, C.

For A € R™*", we denote the entry in row 7 and column j by a;;. We reserve the notation
A;; to refer to a submatrix at block row ¢ and block column j in a partitioning of A.



17. We use a superscript star to denote dual spaces and dual vectors; that is, v* € V* is a
dual vector in the space dual to V.

18. In R, we use z* and z7 interchangeably for the transpose.
19. In C", we use z* and !’ interchangeably for the conjugate transpose.

20. Inner products are denoted by angles, e.g. (z,y) To denote an alternate inner product,
we use subscripts, e.g. (x,y); = y* M.

21. The standard inner product in R™ or C™ is also x - y.

22. In abstract vector spaces with a standard inner product, we use v* to denote the dual
vector associated with v through the inner product, i.e. v* = (w - (w,v)).

23. We use the notation ||z| to denote a norm of the vector x. As with inner products, we use
subscripts to distinguish between multiple norms. When dealing with two generic norms,
we will sometimes use the notation ||y|| to distinguish the second norm from the first.

24. We use order notation for both algorithm scaling with parameters going to infinity
(e.g. O(n?) time) and for reasoning about scaling with parameters going to zero (e.g. O(€?)
error). We will rely on context to distinguish between the two.

25. We use variational notation to denote derivatives of matrix expressions, e.g. 6(AB) =
0A B+ AJB where 0A and §B represent infinitesimal changes to the matrices A and B.

26. Symbols typeset in Courier font should be interpreted as or Julia code or pseudocode,
e.g.y = A*X.

27. The function notation fl(x) refers to taking a real or complex quantity (scalar or vector)
and representing each entry in floating point.

Matrix algebra versus linear algebra

We share a philosophy about linear algebra: we think basis-free, we write basis-free,
but when the chips are down we close the office door and compute with matrices
like fury.

— Irving Kaplansky on the late Paul Halmos (Ewing and Gehring 1991),

Linear algebra is fundamentally about the structure of vector spaces and linear maps between
them. A matrix represents a linear map with respect to some bases. Properties of the
underlying linear map may be more or less obvious via the matrix representation associated
with a particular basis, and much of matrix computations is about finding the right basis (or
bases) to make the properties of some linear map obvious. We also care about finding changes
of basis that are “nice” for numerical work.



In some cases, we care not only about the linear map a matrix represents, but about the matrix
itself. For example, the graph associated with a matrix A € R"*" has vertices {1,...,n} and
an edge (i, j) if a;; # 0. Many of the matrices we encounter in this class are special because of
the structure of the associated graph, which we usually interpret as the “shape” of a matrix
(diagonal, tridiagonal, upper triangular, etc). This structure is a property of the matrix, and
not the underlying linear transformation; change the bases in an arbitrary way, and the graph
changes completely. But identifying and using special graph structures or matrix shapes is
key to building efficient numerical methods for all the major problems in numerical linear
algebra.

In writing, we represent a matrix concretely as an array of numbers. Inside the computer,
a dense matrix representation is a two-dimensional array data structure, usually ordered
row-by-row or column-by-column in order to accomodate the one-dimensional structure of
computer memory address spaces. While much of our work in the class will involve dense
matrix layouts, it is important to realize that there are other data structures! The “best”
representation for a matrix depends on the structure of the matrix and on what we want to do
with it. For example, many of the algorithms we will discuss later in the course only require a
black box function to multiply an (abstract) matrix by a vector.

Dense matrix basics

There is one common data structure for dense vectors: we store the vector as a sequential array
of memory cells. In contrast, there are two common data structures for general dense matrices.
In Julia (and MATLAB, NumPy, Fortran), matrices are stored in column-magjor form. For
example, an array of the first four positive integers interpreted as a two-by-two column major
matrix represents the matrix

5]
2 4|

The same array, when interpreted as a row-major matrix, represents

o]
3 4]
Unless otherwise stated, we will assume all dense matrices are represented in column-major

form for this class. As we will see, this has some concrete effects on the efficiency of different
types of algorithms.

The BLAS

The Basic Linear Algebra Subroutines (BLAS) are a standard library interface for manipulating
dense vectors and matrices. There are three levels of BLAS routines:



e Level 1: These routines act on vectors, and include operations such scaling and dot
products. For vectors of length n, they take O(n!) time.

e Level 2: These routines act on a matrix and a vector, and include operations such as
matrix-vector multiplication and solution of triangular systems of equations by back-
substitution. For n x n matrices and length n vectors, they take O(n?) time.

¢ Level 3: These routines act on pairs of matrices, and include operations such as matrix-
matrix multiplication. For n x n matrices, they take O(n?) time.

All of the BLAS routines are superficially equivalent to algorithms that can be written with
a few lines of code involving one, two, or three nested loops (depending on the level of the
routine). Indeed, except for some refinements involving error checking and scaling for numerical
stability, the reference BLAS implementations involve nothing more than these basic loop
nests. But this simplicity is deceptive — a surprising amount of work goes into producing high
performance implementations.

Locality and memory

When we analyze algorithms, we often reason about their complexity abstractly, in terms of
the scaling of the number of operations required as a function of problem size. In numerical
algorithms, we typically measure flops (short for floating point operations). For example,
consider the loop to compute the dot product of two vectors:

function mydot(x, y)
sum = zero(eltype(x))
for i = 1:length(x)

sum += x[i]*y[i]
end
return sum
end

Because it takes n additions and n multiplications, we say this code takes 2n flops, or (a little
more crudely) O(n) flops.

On modern machines, though, counting flops is at best a crude way to reason about how run
times scale with problem size. This is because in many computations, the time to do arithmetic
is dominated by the time to fetch the data into the processor! A detailed discussion of modern
memory architectures is beyond the scope of these notes, but there are at least two basic facts
that everyone working with matrix computations should know:

e Memories are optimized for access patterns with spatial locality: it is faster to access
entries of memory that are close to each other (ideally in sequential order) than to access
memory entries that are far apart. Beyond the memory system, sequential access patterns



are good for vectorization, i.e. for scheduling work to be done in parallel on the vector
arithmetic units that are present on essentially all modern processors.

e Memories are optimized for access patterns with temporal locality; that is, it is much
faster to access a small amount of data repeatedly than to access large amounts of data.

The main mechanism for optimizing access patterns with temporal locality is a system of caches,
fast and (relatively) small memories that can be accessed more quickly (i.e. with lower latency)
than the main memory. To effectively use the cache, it is helpful if the working set (memory
that is repeatedly accessed) is smaller than the cache size. For level 1 and 2 BLAS routines,
the amount of work is proportional to the amount of memory used, and so it is difficult to
take advantage of the cache. On the other hand, level 3 BLAS routines do O(n?®) work with
O(n?) data, and so it is possible for a clever level 3 BLAS implementation to effectively use
the cache.

Matrix-vector multiply

Let us start with two simple Julia programs for matrix-vector multiplication. The first one
traverses the matrix A one row at a time:

function matvec row(A, x)
m, n = size(A)
y = zeros(eltype(x), m)
for i = 1:m

for j = 1:n
y[i] += A[1,7] * x[]]
end
end
return y

end

The second code traverses a column at a time:

function matvec col(A, x)
m, n = size(A)
y = zeros(eltype(x), m)
for j = 1:n
for i = 1:m
ylil += A[1,j] * x[j]
end
end
return y
end



It’s not too surprising that the builtin matrix-vector multiply routine in Julia runs faster than
either of our hand-written variants, but there are some other surprises lurking. We will try
timing each of these matrix-vector multiply methods for random square matrices of size 4095,
4096, and 4097, to see what happens. Note that we want to run each code many times so that
we don’t get lots of measurement noise from finite timer granularity; for example,

tl = @elapsed begin
for trial = 1l:ntrials
y = A*Xx
end
end

In we would do the same thing using tic and toc.

using Plots
using CSV, DataFrames

p = plot(xlabel="n", ylabel="GFlop/s")
open(" data/matvec_time jl.dat", “r") do io
file = CSV.File(io; delim=' ', ignorerepeated=true)
plot!([row.n for row in file], [row.default for row in filel],
label="Default", xlabel="n", ylabel="GFlop/s",
linewidth=4)
plot!([row.n for row in file], [row.row for row in file],
label="Row-oriented", linewidth=4)
plot!([row.n for row in file], [row.col for row in file],
label="Col-oriented", linewidth=4)
end
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Figure 1: Performance of matrix-vector product routines

On my laptop (a 2021 13 in MacBook Pro with an M1 Pro), we show the GFlop rates (billions
of flops/second) for the three matrix multiply routines in Figure 1. There are a few things to
notice:

e The performance of the built-in multiply far exceeds that of any of the manual implemen-
tations.

e The peak performance occurs for moderate size matrices where the matrix fits into cache,
but there is enough work to hide the loop overheads.

o The time required for the built-in routine varies dramatically (due to so-called conflict
misses) when the dimension is a multiple of a large integer power of two.

o For n = 1024, the column-oriented version (which has good spatial locality) is 10x faster
than the row-oriented code, and 45x faster than the two nested loop version.

If you are so inclined, consider yourself encouraged to repeat the experiment using your favorite
compiled language to see if any of the general trends change significantly.
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Matrix-matrix multiply
The classic algorithm to compute C' := C + AB involves three nested loops

C = zeros(m,n)
for i = 1:m
for j = 1:n
for k = 1:p
C[i,j]1 += A[i,k] * B[k,]]
end
end
end

This is sometimes called an inner product variant of the algorithm, because the innermost
loop is computing a dot product between a row of A and a column of B. But addition is
commutative and associative, so we can sum the terms in a matrix-matrix product in any order
and get the same result. And we can interpret the orders! A non-exhaustive list is:

e ij(k) or ji(k): Compute entry C;j as a product of row ¢ from A and column j from B
(the inner product formulation)

e k(ij): C'is a sum of outer products of column k of A and row k of B for k from 1 to n
(the outer product formulation)

e i(jk) or i(kj): Each row of C is a row of A multiplied by B

e j(ij) or j(ki): Each column of Cis A multiplied by a column of C

At this point, we could write down all possible loop orderings and run a timing experiment,
similar to what we did with matrix-vector multiplication. We do a partial such experiment in
Figure 2.

p = plot(xlabel="n", ylabel="GFlop/s")
open("_data/matmul_time jl.dat", “r") do io
file = CSV.File(io; delim=' ', ignorerepeated=true)
plot!([row.n for row in file], [row.default for row in file],
label="Default", xlabel="n", ylabel="GFlop/s", linewidth=4)
plot!([row.n for row in file], [row.inner for row in file],
label="Inner", linewidth=4)
plot!([row.n for row in file], [row.outer for row in file],
label="0uter", linewidth=4)
end
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Figure 2: Performance of matrix-matrix product routines

But the truth is that high-performance matrix-matrix multiplication routines use another
access pattern altogether, involving more than three nested loops, and we will describe this
now.

Blocking and performance

The basic matrix multiply outlined in the previous section will usually be at least an order of
magnitude slower than a well-tuned matrix multiplication routine. There are several reasons
for this lack of performance, but one of the most important is that the basic algorithm makes
poor use of the cache. Modern chips can perform floating point arithmetic operations much
more quickly than they can fetch data from memory; and the way that the basic algorithm is
organized, we spend most of our time reading from memory rather than actually doing useful
computations. Caches are organized to take advantage of spatial locality, or use of adjacent
memory locations in a short period of program execution; and temporal locality, or re-use of
the same memory location in a short period of program execution. The basic matrix multiply
organizations don’t do well with either of these. A better organization would let us move some
data into the cache and then do a lot of arithmetic with that data. The key idea behind this
better organization is blocking.
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When we looked at the inner product and outer product organizations in the previous sections,
we really were thinking about partitioning A and B into rows and columns, respectively. For
the inner product algorithm, we wrote A in terms of rows and B in terms of columns

57: [b:,l b:,2 b:,n] 9

Ay

and for the outer product algorithm, we wrote A in terms of colums and B in terms of rows

More generally, though, we can think of writing A and B as block matrices:

i All A12

1,py
A = A21 A22 A2apb
_Amb71 Amb72 e Ambypb
Bll B12 e Bl,pb
B — B21 B22 e B 7pb
—BPbJ pr12 prvn‘b

where the matrices A;; and By, are compatible for matrix multiplication. Then we we can
write the submatrices of C'in terms of the submatrices of A and B

Cyy = ;Aiijk.

The lazy man’s approach to performance

An algorithm like matrix multiplication seems simple, but there is a lot under the hood of a
tuned implementation, much of which has to do with the organization of memory. We often get
the best “bang for our buck” by taking the time to formulate our algorithms in block terms, so
that we can spend most of our computation inside someone else’s well-tuned matrix multiply
routine (or something similar). There are several implementations of the Basic Linear Algebra
Subroutines (BLAS), including some implementations provided by hardware vendors and some
automatically generated by tools like ATLAS. The best BLAS library varies from platform
to platform, but by using a good BLAS library and writing routines that spend a lot of time
in level 3 BLAS operations (operations that perform O(n3) computation on O(n?) data and
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can thus potentially get good cache re-use), we can hope to build linear algebra codes that get
good performance across many platforms.

This is also a good reason to use Julia or : they use pretty good BLAS libraries, and so you can
often get surprisingly good performance from it for the types of linear algebraic computations
we will pursue.
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