
Bindel, Spring 2023 Numerical Analysis

2023-04-12

1 Life beyond fixed points
So far, the methods we have discussed for solving nonlinear systems all involve
some flavor of fixed point iteration

xk+1 = G(xk).

Our chief example of such an iteration is Newton’s method, where

G(x) = x− f ′(x)−1f(x).

but we have also considered various other iterations where the Jacobian is
replaced by some more convenient approximation. However, all the methods
we have discussed in this setting compute the next point based only on the
behavior at the current point, and not any previous points.

In earlier parts of the class, of course, we did consider iterations where the
next approximation depends on more than just the current approximation.
Two such iterations spring particularly to mind:

• The secant method is the 1D iteration in which we approximate the
derivative at the current point by a finite difference through the last
two points.

• In iterative methods for solving linear systems, we started with fixed
point iterations based on matrix splittings (such as Jacobi and Gauss-
Seidel), but then recommended them primarily as an approach to pre-
conditioning the more powerful Krylov subspace methods. One way to
think about (preconditioned) Krylov subspaces is that they are spanned
by the iterates of one of these stationary methods. Taking a general
element of this space — a linear combination of the iterates of the
stationary method — improves the convergence of stationary methods.

In this lecture, we describe nonlinear analogues to both of these ap-
proaches. The generalization of the secant condition to more than one direc-
tion gives Broyden’s method, the most popular of the quasi-Newton methods
that couple a Newton-like update of the approximate solution with an update
for an approximate Jacobian. The generalization of the Krylov subspace ap-
proach leads us to extrapolation methods, and we will describe a particular

Bindel, Spring 2023 Numerical Analysis

example known as reduced rank extrapolation. We conclude the lecture with
a brief discussion of Anderson acceleration, a method that can be seen as a
generalization either of the secant approach or of Krylov subspace methods.

As with last time, we will continue to use the autocatalytic reaction-
diffusion equation as a running example.

2 Broyden
Quasi-Newton methods take the form

xk+1 = xk − J−1
k f(xk)

together with an updating formula for computing successive approximate
Jacobians Jk. By far the most popular such updating formula is Broyden’s
(good) update:

Jk+1 = Jk +
f(xk+1)sk

‖sk‖2
, sk = xk+1 − xk

Broyden’s update satisfies the secant condition

Jk+1(x
k+1 − xk) = f(xk+1)− f(xk)

which is the natural generalization of the 1D secant condition. In one di-
mension, the secant condition is enough to uniquely determine the Jacobian
approximation, but this is not the case in more than one dimension. Hence,
Broyden’s update gives the matrix Jk+1 that minimizes ‖Jk+1−Jk‖F subject
to the secant condition.

function naive_broyden(x, f, J; rtol=1e-6, nsteps=100,

monitor=(x, fx) -> nothing)

x = copy(x)

J = Array{Float64}(J) # Dense matrix representation of the initial Jacobian

Take an initial step to get things started

fx = f(x)

monitor(x, fx)

s = -J\fx

Bindel, Spring 2023 Numerical Analysis

for step = 1:nsteps

Take Broyden step and update Jacobian (overwrite old arrays)

x[:] += s

fx[:] = f(x)

J[:,:] += fx*(s/norm(s)^2)

s[:] = -J\fx

Monitor progress and check for convergence

monitor(x, fx)

if norm(fx) < rtol

return x, fx

end

end

We could error out here, but let
s just return x and fx

return x, fx

end

Broyden’s method has three particularly appealing features:

• For sufficiently good starting points x0 (and sufficiently innocuous ini-
tial Jacobian approximations), Broyden’s method is q-superlinearly
convergent, i.e. there is some constant K and some α > 1 such that
‖ek+1‖ ≤ ‖ek‖α.

• The iteration requires only function values. There is no need for ana-
lytical derivatives.

• Because each step is a rank one update, we can use linear algebra tricks
to avoid the cost of a full factorization at each step that would normally
be required for a Newton-type iteration.

The argument that Broyden converges superlinearly is somewhat com-
plex, and we will not cover it in this course; for details of the argument, I
suggest Tim Kelley’s Iterative Methods for Linear and Nonlinear Equations.
The fact that the method requires only function values is obvious from the

https://doi.org/10.1137/1.9781611970944

Bindel, Spring 2023 Numerical Analysis

Figure 1: Convergence of Broyden.

form of the updates. But the linear algebra tricks bear some further inves-
tigation, in part because different tricks are used depending on the type of
problem involved.

We plot convergence of Broyden on the autocatalytic example in Figure 1.
We use the exact Jacobian at the starting point as our initial Jacobian esti-
mate.

2.1 Questions
Give an argument for the claim above that Broyden’s update gives the matrix
Jk+1 that minimizes ‖Jk+1 − Jk‖2F subject to the secant condition.

3 Dense Broyden
For moderate-sized problems, implementations of Broyden’s method may
maintain a dense factorization of the approximate Jacobian which is updated
at each step. This updating can be done economically by exploiting the fact
that the update at each step is rank one. For example, the QR factorization
of Jk can be updated to a QR factorization of Jk+1 in O(n2) time by using

Bindel, Spring 2023 Numerical Analysis

a sequence of Givens rotations. More generally, we can compute the QR
factorization of the rank one update A′ = A+uvT from the QR factorization
A = Q̄R̄ in three steps:

1. Write A′ = Q̄(R̄ + ūvT) where ū = Q̄Tu
2. Apply n−1 Givens rotations to ū to introduce zeros in positions n, n−

1, . . . , 2. Apply those same rotations to the corresponding rows of R,
transformint it into an upper Hessenberg matrix H; and apply the
transposed rotations to the corresponding columns of Q̄ to get A′ =
Q̃(H + γe1v

T).
3. Do Hessenberg QR on H+γe1v

T to finish the decomposition, i.e. apply
Givens rotations to zero out each subdiagonal in turn.

In total, this computation involves computing ū (in O(n2) time) and
applying 2n− 2 Givens rotations across the two factors (also a total of O(n2

time). So updating the factorization of Jk to get a factorization of Jk+1

takes O(n2); and once we have a factorization of Jk+1, linear solves can be
computed in O(n2) time as well. So the total cost per Broyden step is O(n2)
(after an initial O(n3) factorization).

function qrupdate!(Q, R, u, v)

n = length(u)

ubar = Q
*u

for j = n:-1:2

G, r = givens(ubar[j-1], ubar[j], j-1, j)

ubar[j] = 0.

ubar[j-1] = r

R[:,j-1:end] = G*R[:,j-1:end]

Q[:,:] = Q[:,:]*G

end

R[1,:] += ubar[1]*v

for j = 1:n-1

G, r = givens(R[j,j], R[j+1,j], j, j+1)

R[j,j] = r

R[j+1,j]= 0.

R[:,j+1:n] = G*R[:,j+1:n]

Q[:,:] = Q[:,:]*G

end

end

Bindel, Spring 2023 Numerical Analysis

3.1 Questions
Complete the following code for Broyden with QR updating.

function dense_broyden(x, f, J; rtol=1e-6, nsteps=100,

monitor=(x, fx) -> nothing)

x = copy(x) # Copy x (overwrite w/o clobbering the initial guess)

J = Array{Float64}(J) # Dense representation of the initial Jacobian

F = qr(J) # Get a QR factorization

Q = Matrix(F.Q) # Convert the Q factor to standard dense form

R = F.R # Extract the R factor

Take an initial step to get things started

fx = f(x)

monitor(x, fx, J)

s = -J\fx

for step = 1:nsteps

Take Broyden step and update Jacobian (overwrite old arrays)

x[:] += s

fx[:] = f(x)

TODO: Replace these lines with QR-based version

J[:,:] += fx*(s/norm(s)^2)

s[:] = -J\fx

Monitor progress and check for convergence

monitor(x, fx)

if norm(fx) < rtol

return x, fx

end

end

We could error out here, but let
s just return x and fx

return x, fx

end

Bindel, Spring 2023 Numerical Analysis

4 Large-scale Broyden
For large-scale problems, the O(n2) time and storage cost of a dense Broyden
update may be prohibitive, and we would like an alternative with lower
complexity. As long as we have a fast solver for the initial Jacobian J0, we
can compute the first several Broyden steps using a bordered linear system[

J0 −Fk

ST
K Dk

] [
sk

µ

]
=

[
−f(xk)

0

]
,

where

Fk =
[
f(x1) . . . f(xk)

]
,

Sk =
[
s0 . . . sk−1

]
,

Dk = diag(‖s0‖2, . . . , ‖sk−1‖2).

Defining vectors gk = −J−1
0 f(xk) (chord steps), we can rewrite the system

as [
I Gk

ST
k Dk

] [
sk

µ

]
=

[
gk

0

]
.

Defining w = −µ and performing block Gaussian elimination then yields

(Dk − ST
k Gk)w = STgk

sk = gk +Gkw

Hence, to go from step k to step k + 1 in this framework requires one
new solve with J0, O(k2) time to solve the Schur complement system using
an existing factorization (or O(k3) to refactor each time), and O(nk) time
to form the new step and extend the Schur complement system for the next
solve. As long as k is modest, this is likely an acceptable cost. For larger k,
though, it may become annoying. Possible solutions include limited memory
Broyden, which only takes into account the last m steps of the iteration when
computing the modified Jacobian; or restarted Broyden, which restarts from
an approximate Jacobian of J0 after every m Broyden steps.

We illustrate the idea with a simple limited memory Broyden code. We
do not attempt anything clever with the Schur complement solve.

function limited_broyden(x, f, J0solve; rtol=1e-6, nsteps=100, m=10,

monitor=(x, fx) -> nothing)

Bindel, Spring 2023 Numerical Analysis

x = copy(x)

G = zeros(length(x), m)

S = zeros(length(x), m)

D = zeros(m, m)

Take an initial step to get things started

fx = f(x)

monitor(x, fx)

s = -J0solve(fx)

for step = 1:nsteps

Take Broyden step and evaluate function

x[:] += s

fx[:] = f(x)

Update G, S, and D

k = mod(step-1, m)+1

S[:,k] = s

G[:,k] = -J0solve(fx)

D[k,k] = norm(s)^2

Solve next step (keep track of at most m previous steps)

p = min(step, m)

w = (D[1:p,1:p] - S[:,1:p]
*G[:,1:p])\(S[:,1:p]
*G[:,k])

s[:] = G[:,k] + G[:,1:p]*w

Monitor progress and check for convergence

monitor(x, fx)

if norm(fx) < rtol

return x, fx

end

end

We could error out here, but let
s just return x and fx

return x, fx

Bindel, Spring 2023 Numerical Analysis

end

4.1 Questions
Given that the cost of a tridiagonal solve is O(n), what is the dominant cost
per iteration in the limited-memory Broyden code above? Could that cost
be reduced by more clever book-keeping?

5 Reduced rank extrapolation
Extrapolation methods are sequence transformations that convert a slowly-
converging sequence into one that is more rapidly convergent. Vector extrap-
olation methods include reduced rank extrapolation, minimal polynomial
extrapolation, and vector Padé methods. We will focus on the example of
reduced rank extrapolation (RRE), but all of these methods have a similar
flavor.

Suppose x1, x2, . . . ∈ Rn converges to some limit x∗, albeit slowly. We
also suppose an error model that describes ek = xk −x∗; in the case of RRE,
the error model is

ek ≈
m∑
j=1

ujα
k
j .

If this error model were exact (and if we knew the αj), we could define a
degree m+ 1 polynomial

p(z) =
m∑
i=0

γiz
i

such that p(z) = 1 and p(αj) = 0 for each j. Then

m∑
i=0

γixk+1 =
m∑
i=0

γi

(
x∗ +

m∑
j=1

ujα
k+1
j

)

= p(1)x∗ +
m∑
j=1

ukα
k
j p(αj)

= x∗

Of course, in practice, the error model is not exact, and we do not know the
αj! Nonetheless, we can come up with an appropriate choice of polynomials

Bindel, Spring 2023 Numerical Analysis

by asking for coefficients γ such that

rk =
m∑
i=0

γixk+i+1 −
m∑
i=0

γixk+1

is as small as possible in a least squares sense. Writing fk+1 = xk+i+1 − xk+i

and Fk =
[
fk . . . fk+m

]
, we then have

minimize 1

2
‖Fkγ‖22 s.t.

∑
i

γi = 1

Using the method of Lagrange multipliers to enforce the constraint, we have
the Lagrangian

L(γ, µ) =
1

2
γT (F T

k Fk)γ + µ(eTγ − 1),

where e is the vector of all ones; differentiating gives us the stationary equa-
tions [

F T
k Fk e
eT 0

] [
γ
µ

]
=

[
0
1

]
.

If Fk = QkRk is an economy QR decomposition, the solution to this mini-
mization problem is

γ = (R−1
k y)/‖y‖2, y = R−T

k e.

In principle, we can compute the QR decomposition of Fk+1 from the QR
decomposition of Fk relatively quickly (in O(nm) time). Hence, each time we
want to compute one more vector in the extrapolated sequence, the cost is
that of forming one more vector in the original sequence followed by O(nm)
additional work. However, to demonstrate the idea, let’s just write this in
the most obvious way.

We plot convergence of reduced-rank extrapolation of the fixed point
iteration with TN as the Jacobian approximation in Figure 2.

function rre(X)

m = size(X)[2]-1

if m == 0

return X[:,1]

end

Bindel, Spring 2023 Numerical Analysis

Figure 2: Convergence of reduced-rank extrapolated simple fixed-point.

F = qr(X[:,2:end]-X[:,1:end-1])

y = F.R
\ones(m)

γ = (F.R\y)/norm(y)^2

return X[:,2:end]*γ

end

When applied to a the iterates of a stationary iterative method for solv-
ing Ax = b, reduced rank extrapolation is formally the same as the GMRES
iteration. In numerical practice, though, the orthogonalization that takes
place when forming the Krylov subspace bases in GMRES provides much
better numerical stability than we would get from RRE. Whether we apply
the method to linear or nonlinear problems, the matrices Fk in RRE are
often rather ill-conditioned, and the coefficient vectors γ have large positive
and negative entries, so that forming

∑
i γixk+i may lead to significant can-

cellation. For this reason, one may want to choose modest values of m in
practice.

Bindel, Spring 2023 Numerical Analysis

5.1 Questions
Explain why the QR-based algorithm given above to minimize ‖Fkγ‖2 subject
to eTγ = 1 satisfies the stationary conditions.

6 Anderson acceleration
Anderson acceleration is an old method, common in computational chemistry,
that has recently become popular for more varied problems thanks to the
work of Tim Kelley, Homer Walker, and various others. In many ways, it is
similar to reduced rank extrapolation applied to a sequence of iterates from
a fixed point iteration. If we wish to find x∗ such that

f(x∗) = g(x∗)− x∗ = 0

then reduced rank extrapolation – without any linear algebra trickery – at
step k looks like

mk = min(m, k)

Fk =
[
f(xk−mk

) . . . f(xk)
]

γ(k) = argmin ‖Fkγ‖2 s.t.
mk∑
i=0

= 1

sk+1 =

mk∑
i=0

γ
(k)
i g(xk−mk+i)

In this application of reduced rank extrapolation, the output sequence sk and
the input sequence xk (defined by the iteration xk+1 = g(xk)) are distinct
entities. By contrast, in Anderson acceleration we have just one sequence:

mk = min(m, k)

Fk =
[
f(xk−mk

) . . . f(xk)
]

γ(k) = argmin ‖Fkγ‖2 s.t.
mk∑
i=0

= 1

xk+1 =

mk∑
i=0

γ
(k)
i g(xk−mk+i)

Bindel, Spring 2023 Numerical Analysis

The only difference in the pseudocode is that the last step generates a new
xk+1 (which feeds into the next iteration), rather than generating a separate
output sequence sk+1 and computing the next input iterate by a fixed point
step. Thus, the difference between Anderson acceleration and reduced rank
extrapolation is morally the same as the difference between Gauss-Seidel
and Jacobi iteration: in the former case, we try to work with the most recent
guesses available.

Unsurprisingly, Anderson acceleration (like RRE) is equivalent to GM-
RES when applied to linear fixed point iterations. Anderson acceleration can
also be seen as a multi-secant generalization of Broyden’s iteration. For a
good overview of the literature and of different ways of thinking about the
method (as well as a variety of interesting applications), I recommend “An-
derson Acceleration for Fixed-Point Iterations” by Walker and Ni (SIAM J.
Numer. Anal., Vol. 49, No. 4, pp. 1715–1735).

function anderson_step(X, gX)

m = size(gX)[2]

F = qr(gX-X)

y = F.R
\ones(m)

γ = (F.R\y)/norm(y)^2

return gX*γ

end

We plot convergence of Anderson acceleration of the fixed point iteration
with TN as the Jacobian approximation in Figure 3.

https://doi.org/10.1137/10078356X
https://doi.org/10.1137/10078356X

Bindel, Spring 2023 Numerical Analysis

Figure 3: Convergence of Anderson acceleration of a simple fixed-point.

	Life beyond fixed points
	Broyden
	Questions

	Dense Broyden
	Questions

	Large-scale Broyden
	Questions

	Reduced rank extrapolation
	Questions

	Anderson acceleration

