
Bindel, Spring 2023 Numerical Analysis

2023-03-24

1 Nonlinear equations and optimization
If f : Rn → Rn, then solving the system f(x) = 0 is equivalent to minimizing
‖f(x)‖2. Similarly, if g : Rn → R is continuously differentiable, then any
local minimizer x∗ satisfies the nonlinear equations ∇g(x∗) = 0. There is
thus a close connection between nonlinear equation solving on the one hand
and optimization on the other, and methods used for one problem can serve
as the basis for methods for the other.

As with nonlinear equations, the one-dimensional case is the simplest,
and may be the right place to start our discussion. As with the solution
of nonlinear equations, our main strategy for dealing with multi-variable
optimization problems will be to find a promising search direction and then
solve (approximately) a one-dimensional line search problem.

2 Minimization via 1D Newton
Suppose g : R → R has at least two continuous derivatives. If we can
compute g′ and g′′, then one of the simplest ways to find a local minimum is
to use Newton iteration to find a stationary point:

xk+1 = xk −
g′(xk)

g′′(xk)
.

Geometrically, this is equivalent to finding the maximum (or minimum) of a
second-order Taylor expansion about xk; that is, xk+1 is chosen to minimize
(or maximize)

ĝ(xk+1) = g(xk) + g′(xk)(xk+1 − xk) +
1

2
g′′(xk)(xk+1 − xk)

2.

The details are left as an exercise.
There are two gotchas in using Newton iteration in this way. We have

already run into the first issue: Newton’s method is only locally convergent.
We can take care of that problem by combining Newton with bisection, or
by scaling down the length of the Newton step. But there is another issue,
too: saddle points and local maxima are also stationary points!

Bindel, Spring 2023 Numerical Analysis

There is a simple precaution we can take to avoid converging to a max-
imum: insist that g(xk+1) < g(xk). If xk+1 = xk − αku for some αk > 0,
then

g(xk+1)− g(xk) = −αkg
′(xk)u+O(α2

k).

So if g′(xk)u > 0, then −u is a descent direction, and thus g(xk+1) < g(xk)
provided αk is small enough. Note that if xk is not a stationary point, then
−u = −g′(xk)/g

′′(xk) is a descent direction iff g′(xk)u = g′(xk)
2/g′′(xk) > 0.

That is, we will only head in the direction of a minimum if g′′(xk) is positive.
Of course, g′′ will be positive and the Newton step will take us in the right
direction if we are close enough to a strong local minimum.

3 Approximate bisection and golden sections
Assuming that we can compute first derivatives, minimizing in 1D reduces to
solving a nonlinear equation, possibly with some guards to prevent the solver
from wandering toward a solution that does not correspond to a minimum.
We can solve the nonlinear equation using Newton iteration, secant iteration,
bisection, or any combination thereof, depending how sanguine we are about
computing second derivatives and how much we are concerned with global
convergence. But what if we don’t even want to compute first derivatives?

To make our life easier, let’s suppose we know that g is twice continuously
differentiable and that it has a unique minimum at some x∗ ∈ [a, b]. We know
that g′(x) < 0 for a ≤ x < x∗ and g′(x) > 0 for x∗ < x ≤ b; but how can
we get a handle on g′ without evaluating it? The answer lies in the mean
value theorem. Suppose we evaluate g(a), g(b), and g(x) for some x ∈ (a, b).
What can happen?

1. If g(a) is smallest (g(a) < g(x) ≤ g(b)), then by the mean value theo-
rem, g′ must be positive somewhere in (a, x). Therefore, x∗ < x.

2. If g(b) is smallest, x∗ > x.

3. If g(x) is smallest, we only know x∗ ∈ [a, b].

Cases 1 and 2 are terrific, since they mean that we can improve our bounds
on the location of x∗. But in case 3, we have no improvement. Still, this
is promising. What could we get from evaluating g at four distinct points
a < x1 < x2 < b? There are really two cases, both of which give us progress.

Bindel, Spring 2023 Numerical Analysis

1. If g(x1) < g(x2) (i.e. g(a) or g(x1) is smallest) then x∗ ∈ [a, x2].

2. If g(x1) > g(x2) (i.e. g(b) or g(x2) is smallest) then x∗ ∈ [x1, b].

We could also conceivably have g(x1) = g(x2), in which case the minimum
must occur somewhere in (x1, x2).

There are now a couple options. We could choose x1 and x2 to be very
close to each other, thereby nearly bisecting the interval in all four cases. This
is essentially equivalent to performing a step of bisection to find a root of g′,
where g′ at the midpoint is estimated by a finite difference approximation.
With this method, we require two function evaluations to bisect the interval,
which means we narrow the interval by 1/

√
2 ≈ 71% per evaluation.

We can do a little better with a golden section search, which uses x2 =
a+(b−a)/φ and x1 = b+(a−b)/φ, where φ = (1+

√
5)/2 (the golden ratio).

We then narrow to the interval [a, x2] or to the interval [x1, b]. This only
narrows the interval by a factor of φ−1 (or about 61%) at each step. But in
the narrower interval, we get one of the two interior function values “for free”
from the previous step, since x1 = x2 + (a− x2)/φ and x2 = x1 + (b− x1)/φ.
Thus, each step only costs one function evaluation.

4 Successive parabolic interpolation
Bisection and golden section searches are only linearly convergent. Of course,
these methods only use coarse information about the relative sizes of function
values at the sample points. In the case of root-finding, we were able to get
a superlinearly convergent algorithm, the secant iteration, by replacing the
linear approximation used in Newton’s method with a linear interpolant.
We can do something similar in the case of optimization by interpolating
g with a quadratic passing through three points, and then finding a new
guess based on the minimum of that quadratic. This method of successive
parabolic interpolation does converge locally superlinearly. But even when g
is unimodular, successive parabolic interpolation must generally be coupled
with something slower but more robust (like golden section search) in order
to guarantee good convergence.

Bindel, Spring 2023 Numerical Analysis

Problems to ponder
1. Suppose I know f(0), f(1), and a bound |f ′′| < M on [0, 1]. Under

what conditions could f possibly have a local minimum in [0, 1]?

2. Suppose f(x) is approximated on [0, 1] by a polynomial p(x) = c0 +
c1x + . . . + cdx

d, and we know that |f(x) − p(x)| < δ on the interval.
Using MATLAB’s roots function, how could we find tight subintervals
of [0, 1] in which the global minimum of f(x) might lie?

	Nonlinear equations and optimization
	Minimization via 1D Newton
	Approximate bisection and golden sections
	Successive parabolic interpolation

