
Bindel, Spring 2023 Numerical Analysis

2023-03-13

1 Direct to Iterative
For the first part of the semester, we discussed direct methods for solving
linear systems and least squares problems. These methods typically involve
a factorization, such as LU or QR, that reduces the problem to a triangular
solve using forward or backward substitution. These methods run to com-
pletion in a fixed amount of time, and are backed by reliable software in
packages like LAPACK or UMFPACK.

There are a few things you need to know to be an informed user (not
developer) of direct methods:

• You need some facility with matrix algebra, so that you know how to
manipulate matrix factorizations and “push parens” in order to com-
pute efficiently.

• You need to understand the complexity of different factorizations, and
a little about how to take advantage of common matrix structures (e.g.
low-rank structure, symmetry, orthogonality, or sparsity) in order to
effectively choose between factorizations and algorithms.

• You need to understand a little about conditioning and the relationship
between forward and backward error. This is important not only for
understanding rounding errors, but also for understanding how other
errors (such as measurement errors) can affect a result.

It’s also immensely helpful to understand a bit about how the methods work
in practice. On the other hand, you are unlikely to have to build your own
dense Gaussian elimination code with blocking for efficiency; you’ll probably
use a library routine instead. It’s more important that you understand the
ideas behind the factorizations, and how to apply those ideas to use the
factorizations effectively in applications.

Compared to direct methods, iterative methods provide more room for
clever, application-specific twists and turns. An iterative method for solving
the linear system Ax = b produces a series of guesses

x̂1, x̂2, . . . → x.

Bindel, Spring 2023 Numerical Analysis

The goal of the iteration is not always to get the exact answer as fast as
possible; it is to get a good enough answer, fast enough to be useful. The
rate at which the iteration converges to the solution depends not only on
the nature of the iterative method, but also on the structure in the problem.
The picture is complicated by the fact that different iterations cost different
amounts per step, so a “slowly convergent” iteration may in practice get an
adequate solution more quickly than a “rapidly convergent” iteration, just
because each step in the slowly convergent iteration is so cheap.

As with direct methods, though, sophisticated iterative methods are con-
structed from simpler building blocks. In this lecture, we set up one such
building block: stationary iterations.

2 Stationary Iterations
A stationary iteration for the equation Ax = b is typically associated with
a splitting A = M − N , where M is a matrix that is easy to solve (i.e. a
triangular or diagonal matrix) and N is everything else. In terms of the
splitting, we can rewrite Ax = b as

Mx = Nx+ b,

which is the fixed point equation for the iteration

Mxk+1 = Nxk + b.

If we subtract the fixed point equation from the iteration equation, we have
the error iteration

Mek+1 = Nek

or
ek+1 = Rek, R = M−1N.

We’ve already seen one example of such an iteration (iterative refinement
with an approximate factorization); in other cases, we might choose M to
be the diagonal part of A (Jacobi iteration) or the upper or lower triangle
of A (Gauss-Seidel iteration). We will see in the next lecture that there is
an alternate “matrix-free” picture of these iterations that makes sense in the
context of some specific examples, but for analysis it is often best to think
about the splitting picture.

Bindel, Spring 2023 Numerical Analysis

3 Convergence: Norms and Eigenvalues
We consider two standard approaches to analyzing the convergence of a sta-
tionary iteration, both of which revolve around the error iteration matrix
R = M−1N . These approaches involve taking a norm inequality or using an
eigenvalue decomposition. The first approach is often easier to reason about
in practice, but the second is arguably more informative.

For the norm inequality, note that if ‖R‖ < 1 for some operator norm,
then the error satisfies

‖ek+1‖ ≤ ‖R‖‖ek‖ ≤ ‖R‖k‖e0‖.

Because ‖R‖k converges to zero, the iteration eventually converges. As an ex-
ample, consider the case where A is strictly row diagonally dominant (i.e. the
sum of the magnitudes of the off-diagonal elements in each row are less than
the magnitude of the diagonal element), and let M be the diagonal part of
A (Jacobi iteration). In that case, ‖R‖∞ = ‖M−1N‖∞ < 1. Therefore, the
infinity norm of the error is monontonically decreasing1

Bounding by one the infinity norm (or two norm, or one norm) of the
iteration matrix R is sufficient to guarantee convergence, but not necessary.
In order to completely characterize when stationary iterations converge, we
need to turn to an eigenvalue decomposition. Suppose R is diagonalizable,
and write the eigendecomposition as

R = V ΛV −1.

Now, note that Rk = V ΛkV −1, and therefore

‖ek‖ = ‖Rke0‖ = ‖V ΛkV −1e0‖ ≤ κ(V)ρ(R)k‖e0‖,

where ρ(R) is the spectral radius of R, i.e.

ρ(R) = max
λ an eig

|λ|,

and κ(V) = ‖V ‖‖V −1‖. For a diagonalizable matrix, convergence of the
iteration happens if and only if the spectral radius of R is less than one. But

1In finite-dimensional spaces, there is a property of “equivalence of norms” that says
that convergence in one norm implies convergence in any other norm; however, this does
not mean that monotone convergence in one norm implies monotone convergence in any
other norm.

Bindel, Spring 2023 Numerical Analysis

that statement ignores the condition number of the eigenvector matrix! For
highly “non-normal” matrices in which the condition number is large, the
iteration may appear to make virtually no progress for many steps before
eventually it begins to converge at the rate predicted by the spectral radius.
This is consistent with the bounds that we can prove, but often surprises
people who have not seen it before.

4 Splittings and Sweeps
Splitting is the right linear algebraic framework for discussing convergence of
stationary methods, but it is not the way they are usually programmed. The
connection between a matrix splitting and a “sweep” of a stationary iteration
like Gauss-Seidel or Jacobi iteration is not always immediately obvious, and
so it is probably worth spending a moment or two explaining in more detail.

For the sake of concreteness, let’s consider a standard model problem: a
discretization of a Poisson equation on a line. That is, we approximate

−d2u

dx2
= f, u(0) = u(1) = 0

using the second-order finite difference approximation

d2u

dx2
≈ u(x− h)− 2u(x) + u(x+ h)

h2

where h is a small step size. We discretize the problem by meshing [0, 1] with
evenly spaced points xj = jh for j = 0 to N + 1 where h = 1/(N + 1), then
apply this approximation at each point. This procedure yields the equations

−uj−1 + 2uj − uj+1 = h2fj, j = 1, . . . , N

or, in matrix notation
Tu = h2f

where u and f are vectors in RN representing the sampled (approximate)
solution and the sampled forcing function. The matrix T is a frequently-

Bindel, Spring 2023 Numerical Analysis

recurring model matrix, the tridiagonal

T =



2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2


.

Suppose we forgot about how cheap Gaussian elimination is for tridi-
agonal matrices. How might we solve this system of equations? A natural
thought is that we could make an initial guess at the solution, then refine the
solution by “sweeping” over each node j and adjusting the value at that node
(uj) to be consistent with the values at neighboring nodes. In one sweep, we
might compute a new set of values unew from the old values uold:

1 for j = 2:N-1
2 unew[j] = (h^2*f[j] + uold[j-1] + uold[j+1])/2;
3 end

or we might update the values for each node in turn, using the most recent
estimate for each update, i.e.

1 for j = 2:N-1
2 u[j] = (h^2*f[j] + u[j-1] + u[j+1])/2;
3 end

These are, respectively, a step of Jacobi iteration and a step of Gauss-Seidel
iteration, which are two standard stationary methods.

How should we relate the “sweep” picture to a matrix splitting? The
update equation from step k to step k + 1 in Jacobi is

−u
(k)
j−1 + 2u

(k+1)
j − u

(k)
j+1 = h2fj,

while the Gauss-Seidel update is

−u
(k+1)
j−1 + 2u

(k+1)
j − u

(k)
j+1 = h2fj.

In terms of splittings, this means that Jacobi corresponds to taking M to be

Bindel, Spring 2023 Numerical Analysis

the diagonal part of the matrix,

M =



2
2

2
. . .

2
2


, N =



0 1
1 0 1

1 0 1
.

1 0 1
1 0


,

while Gauss-Seidel corresponds to taking M to be the lower triangle of the
matrix,

M =



2
−1 2

−1 2
.

−1 2
−1 2


, N =



0 1
0 1

0 1
.

0 1
0


.

The point of this exercise is that programming stationary iterative meth-
ods and analyzing the same methods may lead naturally to different ways of
thinking about the iterations. It’s worthwhile practicing mapping back and
forth between these two modes of thought.

	Direct to Iterative
	Stationary Iterations
	Convergence: Norms and Eigenvalues
	Splittings and Sweeps

