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Recall from last time that when there are many solutions that give an

almost minimal residual Ax − b, we generally regularize the least squares
problem by adding some assumption about which possible solutions are more
likely or somehow more preferable. Different statistical assumptions give rise
to different regularization strategies; for the current discussion, we shall focus
on the computational properties of a few of the more common regularization
strategies without going into the details of the statistical assumptions. In
particular, we consider four strategies in turn

1. Factor selection via pivoted QR.

2. Tikhonov regularization and its solution.

3. Truncated SVD regularization.

4. `1 regularization or the lasso.

1 Factor selection and pivoted QR
In ill-conditioned problems, the columns of A are nearly linearly depen-
dent; we can effectively predict some columns as linear combinations of other
columns. The goal of the column pivoted QR algorithm is to find a set of
columns that are “as linearly independent as possible.” This is not such a
simple task, and so we settle for a greedy strategy: at each step, we select
the column that is least well predicted (in the sense of residual norm) by
columns already selected. This leads to the pivoted QR factorization

AΠ = QR

where Π is a permutation and the diagonal entries of R appear in descending
order (i.e. r11 ≥ r22 ≥ . . .). To decide on how many factors to keep in
the factorization, we either automatically take the first k or we dynamically
choose to take k factors where rkk is greater than some tolerance and rk+1,k+1

is not.
The pivoted QR approach has a few advantages. It yields parsimonious

models that predict from a subset of the columns of A – that is, we need to
measure fewer than n factors to produce an entry of b in a new column. It
can also be computed relatively cheaply, even for large matrices that may be
sparse.
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2 Tikhonov
A second approach is to say that we want a model in which the coefficients
are not too large. To accomplish this, we add a penalty term to the usual
least squares problem:

minimize ‖Ax− b‖2 + λ2‖x‖2.

Equivalently, we can write

minimize
∥∥∥∥[AλI

]
x−

[
b
0

]∥∥∥∥2

,

which leads to the regularized version of the normal equations

(ATA+ λ2I)x = AT b.

In some cases, we may want to regularize with a more general norm ‖x‖2M =
xTMx where M is symmetric and positive definite, which leads to the regu-
larized equations

(ATA+ λ2M)x = AT b.

If we know of no particular problem structure in advance, the standard choice
of M = I is a good default.

It is useful to compare the usual least squares solution to the regularized
solution via the SVD. If A = UΣV T is the economy SVD, then

xLS = V Σ−1UT b

xTik = V f(Σ)−1UT b

where
f(σ)−1 =

σ

σ2 + λ2
.

This filter of the inverse singular values affects the larger singular values only
slightly, but damps the effect of very small singular values.

3 Truncated SVD
The Tikhonov filter reduces the effect of small singular values on the solu-
tion, but it does not eliminate that effect. By contrast, the truncated SVD
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approach uses the filter

f(z) =

{
z, z > σmin

∞, otherwise.

In other words, in the truncated SVD approach, we use

x = VkΣ
−1
k UT

k b

where Uk and Vk represent the leading k columns of U and V , respectively,
while Σk is the diagonal matrix consisting of the k largest singular values.

4 `1 and the lasso
An alternative to Tikhonov regularization (based on a Euclidean norm of the
coefficient vector) is an `1 regularized problem

minimize ‖Ax− b‖2 + λ‖x‖1.

This is sometimes known as the “lasso” approach. The `1 regularized problem
has the property that the solutions tend to become sparse as λ becomes
larger. That is, the `1 regularization effectively imposes a factor selection
process like that we saw in the pivoted QR approach. Unlike the pivoted
QR approach, however, the `1 regularized solution cannot be computed by
one of the standard factorizations of numerical linear algebra. Instead, one
treats it as a more general convex optimization problem. We will discuss
some approaches to the solution of such problems later in the semester.

5 Tradeoffs and tactics
All four of the regularization approaches we have described are used in prac-
tice, and each has something to recommend it. The pivoted QR approach is
relatively inexpensive, and it results in a model that depends on only a few
factors. If taking the measurements to compute a prediction costs money
— or even costs storage or bandwidth for the factor data! — such a model
may be to our advantage. The Tikhonov approach is likewise inexpensive,
and has a nice Bayesian interpretation (though we didn’t talk about it). The
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truncated SVD approach involves the best approximation rank k approxi-
mation to the original factor matrix, and can be interpreted as finding the k
best factors that are linear combinations of the original measurements. The
`1 approach again produces models with sparse coefficients; but unlike QR
with column pivoting, the `1 regularized solutions incorporate information
about the vector b along with the matrix A.

So which regularization approach should one use? In terms of prediction
quality, all can provide a reasonable deterrent against ill-posedness and over-
fitting due to highly correlated factors. Also, all of the methods described
have a parameter (the number of retained factors, or a penalty parameter
λ) that governs the tradeoff between how well-conditioned the fitting prob-
lem will be and the increase in bias that naturally comes from looking at a
smaller class of models. Choosing this tradeoff intelligently may be rather
more important than the specific choice of regularization strategy. A detailed
discussion of how to make this tradeoff is beyond the scope of the class; but
we will see some of the computational tricks involved in implementing specific
strategies for choosing regularization parameters before we are done.


	Factor selection and pivoted QR
	Tikhonov
	Truncated SVD
	1 and the lasso
	Tradeoffs and tactics

