
Bindel, Spring 2023 Numerical Analysis

2023-02-10

1 Basic LU factorization
In the last lecture, we wrote Gaussian elimination as a sequence Gauss trans-
formations Mj = I − τje

T
j , where τj is the vector of multipliers that appear

when eliminating in column j. At each step, the locations where we write
the multipliers in L are exactly the same locations where we introduce zeros
in A. Thus, we re-use the storage space for A to store L (except for the
diagonal ones, which are implicit) and U . Using this strategy, we have the
following code:

1 #
2 # Explicitly overwrite A with L and U factors
3 #
4 function my_compressed_lu(A)
5 m, n = size(A)
6 for j = 1:n-1
7 A[j+1:n,j] /= A[j,j]
8 A[j+1:n,j+1:n] -= A[j+1:n,j]*A[j,j+1:n]'
9 end

10 A
11 end
12

13 #
14 # Overwrite a copy of A with L and U factors and take views
15 #
16 function my_lu2(A)
17 A = my_compressed_lu(copy(A))
18 UnitLowerTriangular(A), UpperTriangular(A)
19 end

The output matrices L and U are views on the copy of A that we made
internally.

The bulk of the work at step j of the elimination algorithm is in the
computation of a rank-one update to the trailing submatrix. How much
work is there in total? In eliminating column j, we do (n−j)2 multiplies and
the same number of subtractions; so in all, the number of multiplies (and
adds) is

n−1∑
j=1

(n− j)2 =
n−1∑
k=1

k2 =
1

6
n3 +O(n2)



Bindel, Spring 2023 Numerical Analysis

We also perform O(n2) divisions. Thus, Gaussian elimination, like matrix
multiplication, is an O(n3) algorithm operating on O(n2) data.

2 Schur complements
The idea of expressing a step of Gaussian elimination as a low-rank subma-
trix update turns out to be sufficiently useful that we give it a name. At
any given step of Gaussian elimination, the trailing submatrix is called a
Schur complement. We investigate the structure of the Schur complements
by looking at an LU factorization in block 2-by-2 form:[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
=

[
L11U11 L11U12

L21U11 L22U22 + L21U12

]
.

We can compute L11 and U11 as LU factors of the leading sub-block A11, and

U12 = L−1
11 A12

L21 = A21U
−1
11 .

What about L22 and U22? We have

L22U22 = A22 − L21U12

= A22 − A21U
−1
11 L

−1
11 A12

= A22 − A21A
−1
11 A12.

This matrix S = A22−A21A
−1
11 A12 is the block analogue of the rank-1 update

computed in the first step of the standard Gaussian elimination algorithm.
For our purposes, the idea of a Schur complement is important because

it will allow us to write blocked variants of Gaussian elimination — an idea
we will take up in more detail now.

3 Block Gaussian elimination
Just as we could rewrite matrix multiplication in block form, we can also
rewrite Gaussian elimination in block form. For example, if we want[

A11 A12

A21 A22

]
=

[
L11 0
L21 L22

] [
U11 U12

0 U22

]
then we can write Gaussian elimination as:



Bindel, Spring 2023 Numerical Analysis

1. Factor A11 = L11U11.

2. Compute L21 = A21U
−1
11 and U12 = L−1

11 A12.

3. Form the Schur complement S = A22 − L21U12 and factor L22U22 = S.

This same idea works for more than a block 2-by-2 matrix. Suppose idx
is a Julia vector that indicates the first index in each block of variables, so
that block AIJ is extracted as

1 I = idx[i]:idx[i+1]-1
2 J = idx[j]:idx[j+1]-1
3 A_IJ = A[I,J]

Then we can write the following code for block LU factorization:
1 M = length(idx)-1 # Number of blocks
2 for j = 1:M
3 J = idx[j]:idx[j+1]-1 # Indices for block J
4 rest = idx[j+1]:n # Indices after block J
5

6 # Factor diagonal block and take views of the factors
7 A[J,J] = my_compressed_lu(A[J,J])
8 L_JJ = UnitLowerTriangular(A[J,J])
9 U_JJ = UpperTriangular(A[j,j])

10

11 # Compute block column of L and row of U, Schur complement
12 A[rest,J] = A[rest,J]/U_JJ
13 A[J,rest] = L_JJ\A[J,rest]
14 A[rest,rest] -= A[rest,J]*A[J,rest]
15 end

As with matrix multiply, thinking about Gaussian elimination in this
blocky form lets us derive variants that have better cache efficiency. Notice
that all the operations in this blocked code involve matrix-matrix multiplies
and multiple back solves with the same matrix. These routines can be written
in a cache-efficient way, since they do many floating point operations relative
to the total amount of data involved.

Though some of you might make use of cache blocking ideas in your
own work, most of you will never try to write a cache-efficient Gaussian
elimination routine of your own. The routines in LAPACK and Julia (really
the same routines) are plenty efficient, so you would most likely turn to them.
Still, it is worth knowing how to think about block Gaussian elimination,
because sometimes the ideas can be specialized to build fast solvers for linear
systems when there are fast solvers for sub-matrices



Bindel, Spring 2023 Numerical Analysis

For example, consider the bordered matrix

A =

[
B W
V T C

]
,

where B is an n-by-n matrix for which we have a fast solver and C is a p-by-p
matrix, p � n. We can factor A into a product of block lower and upper
triangular factors with a simple form:[

B W
V T C

]
=

[
B 0
V T L22

] [
I B−1W
0 U22

]
where L22U22 = C − V TB−1W is an ordinary (small) factorization of the
trailing Schur complement. To solve the linear system[

B W
V T C

] [
x1

x2

]
=

[
b1
b2

]
,

we would then run block forward and backward substitution:

y1 = B−1b1

y2 = L−1
22

(
b2 − V Ty1

)
x2 = U−1

22 y2

x1 = y1 −B−1(Wx2)

4 Perturbation theory
Previously, we described a general error analysis strategy: derive forward
error bounds by combining a sensitivity estimate (in terms of a condition
number) with a backward error analysis that explains the computed result as
the exact answer to a slightly erroneous problem. To follow that strategy
here, we need the sensitivity analysis of solving linear systems.

Suppose that Ax = b and that Âx̂ = b̂, where Â = A + δA, b̂ = b + δb,
and x̂ = x+ δx. Then

δAx+ Aδx+ δA δx = δb.



Bindel, Spring 2023 Numerical Analysis

Assuming the delta terms are small, we have the linear approximation

δAx+ Aδx ≈ δb.

We can use this to get δx alone:

δx ≈ A−1(δb− δAx);

and taking norms gives us

‖δx‖ . ‖A−1‖(‖δb‖+ ‖δA‖‖x‖).

Now, divide through by ‖x‖ to get the relative error in x:

‖δx‖
‖x‖

. ‖A‖‖A−1‖
(
‖δA‖
‖A‖

+
‖δb‖

‖A‖‖x‖

)
.

Recall that ‖b‖ ≤ ‖A‖‖x‖ to arrive at

‖δx‖
‖x‖

. κ(A)

(
‖δA‖
‖A‖

+
‖δb‖
‖b‖

)
,

where κ(A) = ‖A‖‖A−1‖. That is, the relative error in x is (to first order)
bounded by the condition number times the relative errors in A and b. We
can go beyond first order using Neumann series bounds – but perhaps not
today.

5 Residual good!
The analysis in the previous section is pessimistic in that it gives us the
worst-case error in δx for any δA and δb. But what if we are given data that
behaves better than the worst case?

If we know A and b, a reasonable way to evaluate an approximate solution
x̂ is through the residual r = b− Ax̂. The approximate solution satisfies

Ax̂ = b+ r,

so if we subtract of Ax = b, we have

x̂− x = A−1r.



Bindel, Spring 2023 Numerical Analysis

We can use this to get the error estimate

‖x̂− x‖ = ‖A−1‖‖r‖;

but for a given x̂, we also actually have a prayer of evaluating δx = A−1r with
at least some accuracy. It’s worth pausing to think how novel this situation
is. Generally, we can only bound error terms. If I tell you “my answer is off
by just about 2.5,” you’ll look at me much more sceptically than if I tell you
“my answer is off by no more than 2.5,” and reasonably so. After all, if I
knew that my answer was off by nearly 2.5, why wouldn’t I add 2.5 to my
original answer in order to get something closer to truth? This is exactly the
idea behind iterative refinement:

1. Get an approximate solution Ax̂1 ≈ b.

2. Compute the residual r = b− Ax̂1 (to good accuracy).

3. Approximately solve Aδx1 ≈ r.

4. Get a new approximate solution x̂2 = x̂1 + δx1; repeat as needed.


	Basic LU factorization
	Schur complements
	Block Gaussian elimination
	Perturbation theory
	Residual good!

