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1 Introduction

For the next few lectures, we will build tools to solve linear systems. Our
main tool will be the factorization PA = LU, where P is a permutation,
L is a unit lower triangular matrix, and U is an upper triangular matrix.
As we will see, the Gaussian elimination algorithm learned in a first linear
algebra class implicitly computes this decomposition; but by thinking about
the decomposition explicitly, we find other ways to organize the computation.

2 Triangular solves

Suppose that we have computed a factorization PA = LU. How can we use
this to solve a linear system of the form Ax = b7 Permuting the rows of A

and b, we have
PAx = LUx = Pb,

and therefore
r=U"1L"1Pb.

So we can reduce the problem of finding x to two simpler problems:
1. Solve Ly = Pb
2. Solve Uz =y

We assume the matrix L is unit lower triangular (diagonal of all ones + lower
triangular), and U is upper triangular, so we can solve linear systems with
L and U involving forward and backward substitution.

As a concrete example, suppose

1
L= |2
3

N = O
_ o O

1
, d=|1
3

To solve a linear system of the form Ly = d, we process each row in turn to
find the value of the corresponding entry of y:

1. Row 1: y; = d;
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2. Row 2: 2y; +yo = da, or yo = dy — 211
3. Row 3: 3yy + 2yo + y3 = ds, or y3 = d3 — 3y; — 2y»

More generally, the forward substitution algorithm for solving unit lower tri-
angular linear systems Ly = d looks like

function forward_subst_unit(L, d)
y = copy(d)
n = length(d)
for i = 2:n
y[i]l = d[i] - L[i,1:i-1]'*y[1:i-1]
end

y
end

Similarly, there is a backward substitution algorithm for solving upper trian-
gular linear systems Uz = d
function backward_subst (U, d)

x = copy(d)

n = length(d)

for i = n:-1:1
x[i] = (d[i] - U[i,i+1:n]'*x[i+1:n])/U[i,i]

end

end

Each of these algorithms takes O(n?) time.

3 Gaussian elimination by example

Let’s start our discussion of LU factorization by working through these ideas
with a concrete example:

7

8

1
A= 12
3 0

D Ut
—

To eliminate the subdiagonal entries as; and ag;, we subtract twice the first
row from the second row, and thrice the first row from the third row:

1 4 7 0-1 0-4 0-7 1 4 7
AV =12 5 8| —-12:1 2.4 2.7l =10 -3 —6
3 6 10 3-1 3.4 3.7 0 —6 —11
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That is, the step comes from a rank-1 update to the matrix:

0
AD =A— 12| [1 4 7].
3

Another way to think of this step is as a linear transformation A = M; A,
where the rows of M; describe the multiples of rows of the original matrix
that go into rows of the updated matrix:

0 0 0
1L 0| =I—|2][1 0 0]=1—me].
0 1 3

Similarly, in the second step of the algorithm, we subtract twice the second
row from the third row:

1 4 7 1 0 0] [t 4 7 0
0 -3 =6/ =10 1 0|0 =3 —6|=(I—-|0][0 1 0]]AW.
0 0 1 0 -2 1] [0 =6 —11 2

More compactly: U = (I — mel)AW.
Putting everything together, we have computed

U= (- mnel)(I—mrel)A,

Therefore,
A= (I —7el) (I —med) U = LU.

Now, note that
(I —meD)(I +mel)=1—rmel +mel —melnel =1,
since e{ 7y (the first entry of 71) is zero. Therefore,
(I —7el) ™ = +mel)

Similarly,
(I — TgeQT)_l =+ 7'262T)

Thus,
L= (I+7el)(I+mel).
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Now, note that because 7, is only nonzero in the third element, ef'm = 0;
thus,
L= ([ + 7'16{)([ + 7265)
= (I +mief + ey +7i(e] To)ey

T T
=1+ 1e] + me,

1 00 0 00 000 1 00
=101 0l +12 0 0| +1]0 0 0]=1210
0 01 300 020 3 2 1
The final factorization is
1 4 7 1 0 0] (1 4 7
A=12 5 8| =12 1 0| |0 -3 —6| =LU.
3 6 10 3 2 1] (0 0 1

The subdiagonal elements of L are easy to read off: for i > j, [;; is the
multiple of row j that we subtract from row ¢ during elimination. This
means that it is easy to read off the subdiagonal entries of L during the
elimination process.

4 Basic LU factorization

Let’s generalize our previous algorithm and write a simple code for LU fac-
torization. We will leave the issue of pivoting to a later discussion. We’ll
start with a purely loop-based implementation:

#

# Overwrites a copy of A with L and U
#

function my_lu(A)

= copy(A)

, n = size(A)

UnitLowerTriangular(A) # View on A for tracking multipliers
UpperTriangular(A) # Upper triangular view on A

o8B =

for j = 1:n-1
for i = j+l:n

# Figure out multiple of row j to subtract from row %
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L[i,j] = A[i,j1/A05,]]

# Subtract off the appropriate multiple
for k = j+i:n
Ali,k] -= L[i,jl*A[5,k]
end
end
end

L, U
end

We can write the two innermost loops more concisely in terms of a Gauss
transformation M; = I — Tje;‘r, where 7; is the vector of multipliers that
appear when eliminating in column j:

#

# Overwrites a copy of A with L and U
#

function my_lu2(A)

= copy(A)

, n = size(A)

UnitLowerTriangular(A) # View on A for tracking multipliers
UpperTriangular(A) # Upper triangular view on A

(= = A
I

for j = 1:n-1

# Form vector of multipliers
L[j+1:n,j] ./= A[j,]]

# Apply Gauss transformation
A[j+1:n,j+1:n] -= L[j+1:n,jl*A[j,j+1:n]"

end

end
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5 Problems to ponder

1. What is the complexity of the Gaussian elimination algorithm?

2. Describe how to find A~! using Gaussian elimination. Compare the
cost of solving a linear system by computing and multiplying by A~!
to the cost of doing Gaussian elimination and two triangular solves.

3. Consider a parallelipiped in R? whose sides are given by the columns of
a 3-by-3 matrix A. Interpret LU factorization geometrically, thinking
of Gauss transformations as shearing operations. Using the fact that
shear transformations preserve volume, give a simple expression for tne
volume of the parallelipiped.
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