March 26, 2021

Norms: \(\|Ax\|_2 = \max_x \|Ax\|_2 = \sigma_1(A) \) \(x = u_1 \)

Least squares: \(\arg \min_x \| Ax - b \|^2 + \beta \| x \|^2 \) \(x = A^+ b \) \((A^T A + \beta I)^{-1} A^T b = QR \)

Eigenvalues:
\[\min_x x^T Ax \] \(\text{subject to} \) \(\| x \|_2 = 1 \) \(\lambda \), \(Ax = \lambda x \)

Optimization

Objective function

Unconstrained
\[\min_x f(x) \]
\[\Leftrightarrow \max_x -f(x) \]

Constrained
\[\min_x f(x) \]
\[\text{s.t.} \ g(x) = 0 \]
\[f: \mathbb{R} \rightarrow \mathbb{R} \quad \min_{x \in \mathbb{R}} f(x) \]

Taylor expansion: \[f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(a)}{j!} (x-a)^j \]

Example: \(e^{-x} \) (\(a=0 \)): \[1 - x + \frac{x^2}{2} - \frac{x^3}{6} + \ldots \]

\[f(x+h) = \sum_{j=0}^{\infty} \frac{f^{(j)}(x)}{j!} h^j \approx f(x) + f'(x)h + \frac{1}{2} f''(x) h^2 \]
Taylor's Theorem: \(f : \mathbb{R} \to \mathbb{R} \)

\[f(x+h) = f(x) + f'(x+h)h + \varepsilon(x) \]

\(f(x+h) = f(x) + f'(x)h + \frac{1}{2} f''(x + \theta h) h^2 + \varepsilon(x) \)

Claim: \(x^* \) is local min \(\Rightarrow f'(x^*) = 0 \)

Proof:
\[f'(x^*) \neq 0 \quad p = -f'(x^*) \]

\[f'(x^*) p = -[f'(x^*)]^2 < 0 \]

by continuity, \(f'(x^* + sp) p < 0 \) for \(s \in [0, \epsilon] \)

by Taylor's, for \(s \in (0, \epsilon) \) \(\exists \varepsilon \in (0, 1) \)

\[f(x^* + sp) = f(x^*) + f'(x^* + t_s p) \overbrace{sp}^{\in (0, \epsilon)} < f(x^*) \]

\(\leq 0 \)

(same local min \(p = f'(x^*) \))
Local min or max?

\[f^{(1)} \text{ continuous, } f'(x^*) = 0, f''(x^*) > 0 \]

Claim: \(x^* \) is local min.

Proof: by continuity, \(\exists \epsilon > 0, h \in (-\epsilon, \epsilon) \ f''(x^* + h) > 0 \)

By Taylor's, \(f(x^* + h) = f(x^*) + f'(x^*)h + \frac{1}{2} f''(x^* + \theta h)h^2 \) \(+ e \in (0, 1) \)

\[f(x) = x^3 \]

\[f'(x) = 3x^2 = 0 \]

\[f''(x) = 6x \]

\[x^* = 0 \]

Root finding: find \(x \) such that \(g(x) = 0 \) \(g: \mathbb{R} \to \mathbb{R} \)

(Idea: Find \(f'(x^*) = 0 \) check \(f''(x^*) > 0 \)

\[\Rightarrow \text{ local min} \]
Bisection

Suppose \(g(a) < 0, \ g(b) > 0 \) given \(g \) is continuous

\[
\text{bisect}(a, b) \\
m = (a + b) / 2 \\
s = g(m) \\
\text{if } |s| < \varepsilon \text{ return } m \\
\text{if } s > 0 \text{ return } \text{bisect}(a, m) \\
\text{if } s < 0 \text{ return } \text{bisect}(m, b) \\
\]

after \(k \) steps, \(b_k - a_k = (b_0 - a_0) / 2^k \)