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1 Norms revisited
In the last lecture, we discussed norms, including induced norms: if A maps
between two normed vector spaces V and W , the induced norm on A is

∥A∥V,W = sup
v ̸=0

∥Av∥W
∥v∥V

= sup
∥v∥V=1

∥Av∥W .

When V is finite-dimensional (as it always is in this class), the unit ball
{v ∈ V : ∥v∥ = 1} is compact, and ∥Av∥ is a continuous function of v, so
the supremum is actually attained. Induced norms have a number of nice
properties, not the least of which are the submultiplicative properties

∥Av∥ ≤ ∥A∥∥v∥
∥AB∥ ≤ ∥A∥∥B∥.

The first property (∥Av∥ ≤ ∥A∥∥v∥) is clear from the definition of the vector
norm. The second property is almost as easy to prove:

∥AB∥ = max
∥v∥=1

∥ABv∥ ≤ max
∥v∥=1

∥A∥∥Bv∥ = ∥A∥∥B∥.

The matrix norms induced when V and W are supplied with a 1-norm, 2-
norm, or ∞-norm are simply called the matrix 1-norm, 2-norm, and ∞-norm.
The matrix 1-norm and ∞-norm are given by

∥A∥1 = max
j

∑
i

|aij|

∥A∥∞ = max
i

∑
j

|aij|.

These norms are nice because they are easy to compute; the two norm is nice
for other reasons, but is not easy to compute.

1.1 Norms and Neumann series
We will do a great deal of operator norm manipulation this semester, almost
all of which boils down to repeated use of the triangle inequality and the



Bindel, Spring 2020 Numerical Analysis

submultiplicative property. For now, we illustrate the point by a simple,
useful example: the matrix version of the geometric series.

Suppose F is a square matrix such that ∥F∥ < 1 in some operator norm,
and consider the power series

n∑
j=0

F j.

Note that ∥F j∥ ≤ ∥F∥j via the submultiplicative property of induced oper-
ator norms. By the triangle inequality, the partial sums satisfy

(I − F )
n∑

j=0

F j = I − F n+1.

Hence, we have that

∥(I − F )
n∑

j=0

F j − I∥ ≤ ∥F∥n+1 → 0 as n → ∞,

i.e. I−F is invertible and the inverse is given by the convergent power series
(the geometric series or Neumann series)

(I − F )−1 =
∞∑
j=0

F j.

By applying submultiplicativity and triangle inequality to the partial sums,
we also find that

∥(I − F )−1∥ ≤
∞∑
j=0

∥F∥j = 1

1− ∥F∥
.

Note as a consequence of the above that if ∥A−1E∥ < 1 then

∥(A+ E)−1∥ = ∥(I + A−1E)−1A−1∥ ≤ ∥A−1∥
1− ∥A−1E∥

.

That is, the Neumann series gives us a sense of how a small perturbation to
A can change the norm of A−1.
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2 Notions of error
The art of numerics is finding an approximation with a fast algorithm, a
form that is easy to analyze, and an error bound. Given a task, we want
to engineer an approximation that is good enough, and that composes well
with other approximations. To make these goals precise, we need to define
types of errors and error propagation, and some associated notation – which
is the point of this lecture.

2.1 Absolute and relative error
Suppose x̂ is an approximation to x. The absolute error is

eabs = |x̂− x|.

Absolute error has the same dimensions as x, and can be misleading without
some context. An error of one meter per second is dramatic if x is my walking
pace; if x is the speed of light, it is a very small error.

The relative error is a measure with a more natural sense of scale:

erel =
|x̂− x|
|x|

.

Relative error is familiar in everyday life: when someone talks about an error
of a few percent, or says that a given measurement is good to three significant
figures, she is describing a relative error.

We sometimes estimate the relative error in approximating x by x̂ using
the relative error in approximating x̂ by x:

êrel =
|x̂− x|
|x̂|

.

As long as êrel < 1, a little algebra gives that

êrel
1 + êrel

≤ erel ≤
êrel

1− êrel
.

If we know êrel is much less than one, then it is a good estimate for erel. If
êrel is not much less than one, we know that x̂ is a poor approximation to x.
Either way, êrel is often just as useful as erel, and may be easier to estimate.
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Relative error makes no sense for x = 0, and may be too pessimistic when
the property of x we care about is “small enough.” A natural intermediate
between absolute and relative errors is the mixed error

emixed =
|x̂− x|
|x|+ τ

where τ is some natural scale factor associated with x.

2.2 Errors beyond scalars
Absolute and relative error make sense for vectors as well as scalars. If ∥ · ∥
is a vector norm and x̂ and x are vectors, then the (normwise) absolute and
relative errors are

eabs = ∥x̂− x∥, erel =
∥x̂− x∥
∥x∥

.

We might also consider the componentwise absolute or relative errors

eabs,i = |x̂i − xi| erel,i =
|x̂i − xi|

|xi|
.

The two concepts are related: the maximum componentwise relative error
can be computed as a normwise error in a norm defined in terms of the
solution vector:

max
i

erel,i = |||x̂− x|||

where |||z||| = ∥ diag(x)−1z∥. More generally, absolute error makes sense
whenever we can measure distances between the truth and the approxima-
tion; and relative error makes sense whenever we can additionally measure
the size of the truth. However, there are often many possible notions of
distance and size; and different ways to measure give different notions of
absolute and relative error. In practice, this deserves some care.

2.3 Forward and backward error and conditioning
We often approximate a function f by another function f̂ . For a particular
x, the forward (absolute) error is

|f̂(x)− f(x)|.
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In words, forward error is the function output. Sometimes, though, we can
think of a slightly wrong input:

f̂(x) = f(x̂).

In this case, |x − x̂| is called the backward error. An algorithm that always
has small backward error is backward stable.

A condition number a tight constant relating relative output error to
relative input error. For example, for the problem of evaluating a sufficiently
nice function f(x) where x is the input and x̂ = x + h is a perturbed input
(relative error |h|/|x|), the condition number κ[f(x)] is the smallest constant
such that

|f(x+ h)− f(x)|
|f(x)|

≤ κ[f(x)]
|h|
|x|

+ o(|h|)

If f is differentiable, the condition number is

κ[f(x)] = lim
h̸=0

|f(x+ h)− f(x)|/|f(x)|
|(x+ h)− x|/|x|

=
|f ′(x)||x|
|f(x)|

.

If f is Lipschitz in a neighborhood of x (locally Lipschitz), then

κ[f(x)] =
Mf(x)|x|
|f(x)|

.

where Mf is the smallest constant such that |f(x+h)−f(x)| ≤ Mf |h|+o(|h|).
When the problem has no linear bound on the output error relative to the
input error, we sat the problem has an infinite condition number. An example
is x1/3 at x = 0.

A problem with a small condition number is called well-conditioned; a
problem with a large condition number is ill-conditioned. A backward stable
algorithm applied to a well-conditioned problem has a small forward error.

3 Perturbing matrix problems
To make the previous discussion concrete, suppose I want y = Ax, but
because of a small error in A (due to measurement errors or roundoff effects),
I instead compute ŷ = (A+ E)x where E is “small.” The expression for the
absolute error is trivial:

∥ŷ − y∥ = ∥Ex∥.
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But I usually care more about the relative error.

∥ŷ − y∥
∥y∥

=
∥Ex∥
∥y∥

.

If we assume that A is invertible and that we are using consistent norms
(which we will usually assume), then

∥Ex∥ = ∥EA−1y∥ ≤ ∥E∥∥A−1∥∥y∥,

which gives us

∥ŷ − y∥
∥y∥

≤ ∥A∥∥A−1∥∥E∥
∥A∥

= κ(A)
∥E∥
∥A∥

.

That is, the relative error in the output is the relative error in the input mul-
tiplied by the condition number κ(A) = ∥A∥∥A−1∥. Technically, this is the
condition number for the problem of matrix multiplication (or solving linear
systems, as we will see) with respect to a particular (consistent) norm; dif-
ferent problems have different condition numbers. Nonetheless, it is common
to call this “the” condition number of A.

4 Dimensions and scaling
The first step in analyzing many application problems is nondimensional-
ization: combining constants in the problem to obtain a small number of
dimensionless constants. Examples include the aspect ratio of a rectangle,
the Reynolds number in fluid mechanics1, and so forth. There are three big
reasons to nondimensionalize:

• Typically, the physics of a problem only really depends on dimension-
less constants, of which there may be fewer than the number of dimen-
sional constants. This is important for parameter studies, for example.

• For multi-dimensional problems in which the unknowns have different
units, it is hard to judge an approximation error as “small” or “large,”
even with a (normwise) relative error estimate. But one can usually
tell what is large or small in a non-dimensionalized problem.

1Or any of a dozen other named numbers in fluid mechanics. Fluid mechanics is a field
that appreciates the power of dimensional analysis
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• Many physical problems have dimensionless parameters much less than
one or much greater than one, and we can approximate the physics in
these limits. Often when dimensionless constants are huge or tiny and
asymptotic approximations work well, naive numerical methods work
work poorly. Hence, nondimensionalization helps us choose how to
analyze our problems — and a purely numerical approach may be silly.

5 Problems to ponder
1. Show that as long as êrel < 1,

êrel
1 + êrel

≤ erel ≤
êrel

1− êrel
.

2. Show that A+E is invertible if A is invertible and ∥E∥ < 1/∥A−1∥ in
some operator norm.

3. In this problem, we will walk through an argument about the bound
on the relative error in approximating the relative error in solving a
perturbed linear system: that is, how well does ŷ = (A+E)−1b approx-
imate y = A−1b in a relative error sense? We will assume throughout
that ∥E∥ < ϵ and κ(A)ϵ < 1.

(a) Show that ŷ = (I + A−1E)y.
(b) Using Neumann series bounds, argue that

∥(I + A−1E)− I∥ ≤ ∥A−1E∥
1− ∥A−1E∥

(c) Conclude that
∥ŷ − y∥
∥y∥

≤ κ(A)ϵ

1− κ(A)ϵ
.
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