CS 4220: Some Review Problems

1. Given data $(t_1, y_1), \ldots, (t_m y_m)$, show how fmninbnd can be used to solve the problem of minimizing α_1 , α_2 and λ so that

$$\phi(a,b,\lambda) = \sum_{i=1}^{m} \left(\alpha_1 + \alpha_2 e^{\lambda t_i} - y_i\right)^2 := \|A(\lambda)\alpha - y\|_2^2$$

is minimum?. What is $A(\lambda)$? What is the best choice of α given λ ? What is the function passed to fminbnd?

2. Assume the availability of the following function:

function [Q,R] = Update(Q0,R0,u,v)

- % QO is m-by-m orthogonal, RO is m-by-n upper triangular, u is m-by-1, v is n-by-1
- % Q is m-by-m orthogonal, R is m-by-n upper triangular, Q*R = Q0*R0 + u*v'
- (a) How would you solve min ||Ax b|| and min $||\tilde{A}x b||$ given that \tilde{A} is defined by $\tilde{A}(:,k) = A(:,k) sum(A(:,k))$.
- (b) How would you solve min ||Ax b|| and min $||\tilde{A}x b||$ given that \tilde{A} is A with a new row appended to the bottom.
- (c) How would you solve min ||Ax b|| and min $||\tilde{A}x b||$ given that \tilde{A} is A with its first column replaced by a given vector.
- 3, $M \in \mathbb{R}^{n \times n}$ has the property that the first n-1 columns of $M-I_n$ are independent. How would you compute a nonzero vector x so Mx = x given that P(M-I) = LU is on tap?
- **4.** $G \in \mathbb{R}^{n \times n}$ is a 0-1 matrix in sparse format. Define the matrix $B \in \mathbb{R}^{n \times n}$ by

$$B(:,k) \ = \ \left\{ \begin{array}{ll} G(:,k)/sum(G(:,k)) & \text{if } G(:,k) \neq 0 \\ \\ \text{ones}(n,1)/n & \text{otherwise} \end{array} \right.$$

Let $0 < \rho < 1$ be a scalar. How would you apply the power method to compute the dominant eigenvector for the matrix $A = \rho B + (1 - \rho) * \operatorname{ones}(n, n)/n$. Show carefully how you would organize the matrix-vector products.

- **5.** $Q \in \mathbb{R}^{n \times n}$ is orthogonal with a unique eigenvalue equal to one. What happens if the power method is applied to the matrix $A = I + (Q + Q^T)/2$? Hint: Draw a picture of A's eigenvalues.
- **6.** (a) How would you minimize $||Ax||_2$ subject to the constraint that $x_1 = 1.$? (b) Given $t \in \mathbb{R}^m$, how would you determine a scalar τ so that

$$\sum_{k=1}^{m} \left[\sin(t_i - \tau) \right]^2$$

is minimized? Hint: Trig identities and SVD.

- 7. What does a step of steepest-descent with exact line search look like when applied to the minimization of $\phi(x) = x^T A x / x^T x$ where $A \in \mathbb{R}^{n \times n}$ is symmetric?
- **8.** Newton's method is applied to find a, b, and c so that $(x-a)(x-b)(x-c) = x^3 + 5x^2 3x + 4$. Describe the linear system that must be solved each step.
- **9.** How could Householder tridiagonalization be used to solve the linear system $(A^2 5A + 6I)x = b$ where $A \in \mathbb{R}^{n \times n}$ is symmetric?
- **10.** Suppose $A, B \in \mathbb{R}^{m \times n}$ and m < n/2. How could you find $x \in \mathbb{R}^n$ so that Ax = b and Bx = c where $b, c \in \mathbb{R}^m$ are given?