CS 4220: Review Probs

1.

- (a) The unit roundoff EPS is approximately the smallest floating point number x such that 1 + x is greater than 1 in floating point arithmetic. How is EPS related to the floating point mantissa length?
- (b) Assuming that a and b is are initialized floating point numbers with positive value, complete the following conditional so that the message is printed if b is (roughly) less than EPS*a. Do not reference the built-in constant EPS.

```
disp('b is small compared to a')
end
```

(c) Why is the SVD a reliable method for exploring how near a matrix is to being rank-deficient?

2.

- (a) We say $A \in \mathbb{R}^{n \times n}$ is *stochastic* if it has positive entries and it has unit column sums. It is known that if A is stochastic then its dominant eigenvalue λ_{max} equals 1 and there is a unique $x \in \mathbb{R}^n$ with positive entries so Ax = x. Explain why small changes in A induce corresponding small changes in λ_{max} .
- (b) Complete the following function so that it performs as specified:

```
function x = LowerHessSolve(H,b)
% H is a nonsingular n-by-n matrix with H(i,j) = 0 whenever j>i+1.
% b is a column n-vector
% x satisfies Hx = b.
```

Make effective use of the LU-with pivoting factorization.

3.

If $C \in \mathbb{R}^{n \times n}$ is nonsingular and $u, v \in \mathbb{R}^n$, then the Sherman-Morrison formula gives a recipe for the inverse of $(C + uv^T)$ if this matrix is nonsingular. In particular,

$$(C+uv^T)^{-1}=C^{-1}+\alpha wz^T$$

where $w = C^{-1}u$, $z^T = v^T C^{-1}$, and $\alpha = -1/(1 + v^T C^{-1}u)$.

By making effective use of the QR factorization, complete the following function so that it performs as specified:

```
function [x,z] = DoubleSolve(A,f,g,b)
% A is a nonsingular n-by-n matrix.
% f, g, and b are column n-vectors.
% x and z are column n-vectors with the property that Ax = b and
% (A + f*g')z = b. (Assume the latter system is nonsingular.)
```

You may use the backslash operator to solve triangular systems.

4.

The Jacobi method for computing the Schur decomposition of a real symmetric matrix $A \in \mathbb{R}^{n \times n}$ is based on solving a sequence 2-by-2 subproblems.

- (a) Explain why each subproblem involves O(n) flops.
- (b) What makes the method attractive for parallel computation?

5.

For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture for Newton's method would show the linear model and label its zero.)

- (a) The Secant method for finding a zero of $f: \mathbb{R} \to \mathbb{R}$.
- (b) The Golden Section search method for finding a minimum of $f:\mathbb{R} \to \mathbb{R}$ on [L,R] assuming that f'' is always positive.
- (c) The steepest descent method with exact line search for finding a minimum of $f:\mathbb{R}^2 \to \mathbb{R}$. (Draw contours.)

6.

Consider the objective function

$$\phi(x) = \frac{1}{2}F(x)^T F(x) = \frac{1}{2}\sum_{i=1}^m F_i(x)^2$$

where $F(x) = [F_1, \dots, F_m(x)]^T$ and $F_i: \mathbb{R}^n \to \mathbb{R}$. If $J_c = J(x_c) \in \mathbb{R}^{m \times n}$ is the Jacobian of F at x_c then the gradient of ϕ at x_c is given by

$$g_c = J(x_c)^T F_c$$
 $F_c = F(x_c)^T F_c$

and its Hessian by

$$H_c = J_c^T J_c + \sum_{i=1}^m F_i(x_c) \nabla^2 F_i(x_c)$$

Refer to the summation as the "messy part of the Hessian." From calculus we know that

$$\phi(x_c + s) = \phi(x_c) + s^T g_c + \frac{1}{2} s^T H_c s + \dots$$

- (a) The Gauss-Newton method chooses s by minimizing the quadratic model $q_c(s) = \phi(x_c) + s^T g_c + \frac{1}{2} s^T J_c^T J_c s$. Explain why this leads to a linear least squares problem.
- (b) Even though the Gauss-Newton method ignores the messy part of the Hessian, it may still converge quadratically for certain types of nonlinear least squares problems. Explain.
- (c) The Levenberg-Marquardt method replaces the messy part of the Hessian with $\mu^2 I_n$. In particular, the step s is determined by minimizing $q_c(s) = \phi(x_c) + s^T g_c + \frac{1}{2} s^T (J_c^T J_c + \mu^2 I) s$. How does the least squares problem in (a) change and why does the SVD make it easy to characterize the minimizing s as a function of μ ?

7.

Suppose $t, x, y \in \mathbb{R}^m$ are given and that we wish to determine $\rho^T = [\rho_1, \dots, \rho_k]$ and $r^T = [r_1, \dots, r_k]$ so that

$$\phi(r, \rho) = \sum_{i=1}^{m} \left(x_i - \sum_{j=1}^{k} r_j \cos\left(\frac{2\pi t_i}{\rho_j}\right) \right)^2 + \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{k} r_j \sin\left(\frac{2\pi t_i}{\rho_j}\right) \right)^2$$

is minimized.

(a) Define ϕ in the "language" of matrices, vectors, and norms instead of the language of summations and subscripts.

(b) Explain how the problem of minimizing ϕ can be approached as a k-parameter nonlinear least squares problem. Be sure to include in your explanation a definition of the objective function. (You do not have to discuss its implementation.)

8.

(a) A 3-by-3 linear system with infinity-norm condition 10^8 is solved via the MATLAB backslash operator \ on a computer with unit roundoff 10^{-17} . Here is the computed solution:

x(1) = 1234.5678901234567

x(2) = 1.2345678901234567

x(3) = .00012345678901234567

Underline the digits that are most likely correct and explain why. Recall that $||v||_{\infty} = \max |v_i|$.

(b) We wish to do a least squares fitting of a function of the form $f(t) = \alpha + \beta e^{\lambda t}$ to the data $(t_1, y_1), \ldots, (t_m, y_m)$. Assume that $y_1 > y_2 > \cdots > y_m$ and $0 < t_1 < t_2 < \cdots < t_m$ with m > 2. Explain why small relative changes in the data *might* induce large relative changes in the optimal fitting function. Be brief.

9.

(a) Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, $b \in \mathbb{R}^n$, and h > 0. We wish to evaluate

$$f(z) = b^T (A + zI)^{-1} b$$

for $z = h, 2h, \ldots, mh$ where m >> n. Complete the following function so that it performs as specified.

function fVals = ManySolve(A,b,h,m)

% A is an n-by-n symmetric positive definite matrix and b is n-by-1.

% h>0 and m is a positive integer.

% fVals is a column m-vector with fVals(k) = b'*inv(A+khI)*b, k=1:m

Hint: Picking the right factorization can make each f-evaluation O(n).

(b) Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $c, d \in \mathbb{R}^n$. We wish to solve the following linear system for $y, z \in \mathbb{R}^n$:

$$\left[\begin{array}{cc} A & A \\ A & -A \end{array}\right] \left[\begin{array}{c} y \\ z \end{array}\right] = \left[\begin{array}{c} c \\ d \end{array}\right]$$

Write a Matlab function [y,z] = BigSolve(A,c,d) that does this. Do not use the backslash operator \setminus except to solve triangular systems.

10.

For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture for Newton's method would show the linear model and label its zero.)

- (a) The Secant method for finding a zero of $f: \mathbb{R} \to \mathbb{R}$.
- (b) The Golden Section search method for finding a minimum of $f:\mathbb{R} \to \mathbb{R}$ on [L,R] assuming that f'' is always positive.
- (c) The steepest descent method with exact line search for finding a minimum of $f:\mathbb{R}^2 \to \mathbb{R}$. (Draw contours.)

11.

- (a) Assume that δ is greater than the unit roundoff and that each entry in a data matrix $A \in \mathbb{R}^{m \times n}$ has relative error $\approx \delta$. How would you estimate the rank of A from the QR-with-column-pivoting factorization? Recall that in that factorization r_{kk} is the largest entry in the submatrix R(k:m,k:n). Justify your answer by explaining the amount of error that we can expect in the computed R. Order-of-magnitude reasoning is absolutely fine.
- (b) When solving a rank-deficient least squares problem, why might one prefer QR-with-column-pivoting method to the singular value decomposition method? Be brief.

12.

To find a zero x_* of a function f we can apply Newton's method:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $k = 0, 1, \dots$

It can be shown that

$$|x_{k+1} - x_*| = \left| \frac{f''(\eta)}{f'(x_k)} \right| |x_k - x_*|^2$$

where η is in between x_* and x_k .

- (a) This means that the order of convergence for Newton's method is 2. The secant method has order ≈ 1.6 . Does this mean that the Newton's method will require fewer iterations? Explain.
- (b) Assume that $|f'(x)| \ge \delta > 0$ for all x and that $|f''(x)| \le M_2$ for all x. Show that the Newton iteration converges to x_* if x_0 is "close enough" to x_* . Be precise about "close enough".

Some MATLAB Functions

LU Factorization

[L,U,P] = LU(X) returns unit lower triangular matrix L, upper triangular matrix U, and permutation matrix P so that P*X = L*U.

Cholesky Factorization

R = CHOL(X) returns an upper triangular R so that R'*R = X where X is symmetric and positive definite.

QR Factorization

[Q,R,E] = QR(A) produces unitary Q, upper triangular R and a permutation matrix E so that A*E = Q*R. The column permutation E is chosen so that ABS(DIAG(R)) is decreasing.

Singular Value Decomposition

[U,S,V] = SVD(X) produces a diagonal matrix S, of the same dimension as X and with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that X = U*S*V'.

Schur Decomposition

[U,D] = SCHUR(X) produces a diagonal matrix D and an orthogonal matrix U so that X = U*D*U' assuming that X is real and symmetric.