
CS 4220: Review Probs

1.

(a) The unit roundoff EPS is approximately the smallest floating point number x such that 1 + x is greater
than 1 in floating point arithmetic. How is EPS related to the floating point mantissa length?

(b) Assuming that a and b is are initialized floating point numbers with positive value, complete the following
conditional so that the message is printed if b is (roughly) less than EPS*a. Do not reference the built-in
constant EPS.

if ____________________________________________

disp(’b is small compared to a’)
end

(c) Why is the SVD a reliable method for exploring how near a matrix is to being rank-deficient?

2.
(a) We say A ∈ IRn×n is stochastic if it has positive entries and it has unit column sums. It is known that if
A is stochastic then its dominant eigenvalue λmax equals 1 and there is a unique x ∈ IRn with positive entries
so Ax = x. Explain why small changes in A induce corresponding small changes in λmax.

(b) Complete the following function so that it performs as specified:

function x = LowerHessSolve(H,b)
% H is a nonsingular n-by-n matrix with H(i,j) = 0 whenever j>i+1.
% b is a column n-vector
% x satisfies Hx = b.

Make effective use of the LU-with pivoting factorization.

3.

If C ∈ IRn×n is nonsingular and u, v ∈ IRn, then the Sherman-Morrison formula gives a recipe for the inverse
of (C + uvT ) if this matrix is nonsingular. In particular,

(C + uvT )−1 = C−1 + αwzT

where w = C−1u, zT = vT C−1, and α = −1/(1 + vT C−1u).
By making effective use of the QR factorization, complete the following function so that it performs as

specified:

function [x,z] = DoubleSolve(A,f,g,b)
% A is a nonsingular n-by-n matrix.
% f, g, and b are column n-vectors.
% x and z are column n-vectors with the property that Ax = b and
% (A + f*g’)z = b. (Assume the latter system is nonsingular.)

You may use the backslash operator to solve triangular systems.

4.

The Jacobi method for computing the Schur decomposition of a real symmetric matrix A ∈ IRn×n is based on
solving a sequence 2-by-2 subproblems.
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(a) Explain why each subproblem involves O(n) flops.

(b ) What makes the method attractive for parallel computation?

5.

For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas
are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture
for Newton’s method would show the linear model and label its zero.)

(a) The Secant method for finding a zero of f :IR → IR.

(b) The Golden Section search method for finding a minimum of f :IR → IR on [L, R] assuming that f ′′ is
always positive.

(c)The steepest descent method with exact line search for finding a minimum of f :IR2 → IR. (Draw contours.)

6.

Consider the objective function

φ(x) =
1
2
F (x)T F (x) =

1
2

m∑
i=1

Fi(x)2

where F (x) = [F1, . . . , Fm(x)]T and Fi: IRn → IR. If Jc = J(xc) ∈ IRm×n is the Jacobian of F at xc then the
gradient of φ at xc is given by

gc = J(xc)T Fc Fc = F (xc

and its Hessian by

Hc = JT
c Jc +

m∑
i=1

Fi(xc)∇2Fi(xc)

Refer to the summation as the “messy part of the Hessian.” From calculus we know that

φ(xc + s) = φ(xc) + sT gc +
1
2
sT Hcs + . . .

(a) The Gauss-Newton method chooses s by minimizing the quadratic model qc(s) = φ(xc)+sT gc + 1
2sT JT

c Jcs.
Explain why this leads to a linear least squares problem.

(b) Even though the Gauss-Newton method ignores the messy part of the Hessian, it may still converge
quadratically for certain types of nonlinear least squares problems. Explain.

(c) The Levenberg-Marquardt method replaces the messy part of the Hessian with μ2In. In particular, the
step s is determined by minimizing qc(s) = φ(xc) + sT gc + 1

2sT (JT
c Jc + μ2I)s. How does the least squares

problem in (a) change and why does the SVD make it easy to characterize the minimizing s as a function of
μ?

7.

Suppose t, x, y ∈ IRm are given and that we wish to determine ρT = [ρ1, . . . , ρk] and rT = [r1, . . . , rk] so that

φ(r, ρ) =
m∑

i=1

⎛
⎝xi −

k∑
j=1

rj cos
(

2πti
ρj

)⎞
⎠

2

+
m∑

i=1

⎛
⎝yi −

k∑
j=1

rj sin
(

2πti
ρj

)⎞
⎠

2

is minimized.

(a) Define φ in the “language” of matrices, vectors, and norms instead of the language of summations and
subscripts.
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(b) Explain how the problem of minimizing φ can be approached as a k-parameter nonlinear least squares
problem. Be sure to include in your explanation a definition of the objective function. (You do not have to
discuss its implementation.)

8.

(a) A 3-by-3 linear system with infinity-norm condition 108 is solved via the Matlab backslash operator \ on
a computer with unit roundoff 10−17. Here is the computed solution:

x(1) = 1234.5678901234567

x(2) = 1.2345678901234567

x(3) = .00012345678901234567

Underline the digits that are most likely correct and explain why. Recall that ‖ v ‖∞ = max |vi|.

(b) We wish to do a least squares fitting of a function of the form f(t) = α+βeλt to the data (t1, y1), . . . , (tm, ym).
Assume that y1 > y2 > · · · > ym and 0 < t1 < t2 < · · · < tm with m > 2. Explain why small relative changes
in the data might induce large relative changes in the optimal fitting function. Be brief.

9.

(a) Suppose A ∈ IRn×n is symmetric and positive definite, b ∈ IRn, and h > 0. We wish to evaluate

f(z) = bT (A + zI)−1b

for z = h, 2h, . . . , mh where m >> n. Complete the following function so that it performs as specified.

function fVals = ManySolve(A,b,h,m)
% A is an n-by-n symmetric positive definite matrix and b is n-by-1.
% h>0 and m is a positive integer.
% fVals is a column m-vector with fVals(k) = b’*inv(A+khI)*b, k=1:m

Hint: Picking the right factorization can make each f-evaluation O(n).

(b) Suppose A ∈ IRn×n is symmetric and positive definite and c, d ∈ IRn. We wish to solve the following linear
system for y, z ∈ IRn: [

A A
A −A

] [
y
z

]
=

[
c
d

]

Write a Matlab function [y,z] = BigSolve(A,c,d) that does this. Do not use the backslash operator \ except
to solve triangular systems.

10.

For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas
are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture
for Newton’s method would show the linear model and label its zero.)

(a) The Secant method for finding a zero of f :IR → IR.

(b) The Golden Section search method for finding a minimum of f :IR → IR on [L, R] assuming that f ′′ is
always positive.

(c)The steepest descent method with exact line search for finding a minimum of f :IR2 → IR. (Draw contours.)

11.
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(a) Assume that δ is greater than the unit roundoff and that each entry in a data matrix A ∈ IRm×n has
relative error ≈ δ. How would you estimate the rank of A from the QR-with-column-pivoting factorization?
Recall that in that factorization rkk is the largest entry in the submatrix R(k:m, k:n). Justify your answer
by explaining the amount of error that we can expect in the computed R. Order-of-magnitude reasoning is
absolutely fine.

(b) When solving a rank-deficient least squares problem, why might one prefer QR-with-column-pivoting
method to the singular value decomposition method? Be brief.

12.

To find a zero x∗ of a function f we can apply Newton’s method:

xk+1 = xk − f(xk)
f ′(xk)

k = 0, 1, . . .

It can be shown that

|xk+1 − x∗| =
∣∣∣∣ f”(η)
f ′(xk)

∣∣∣∣ |xk − x∗|2

where η is in between x∗ and xk.

(a) This means that the order of convergence for Newton’s method is 2. The secant method has order ≈ 1.6.
Does this mean that the Newton’s method will reqire fewer iterations? Explain.

(b) Assume that |f ′(x)| ≥ δ > 0 for all x and that |f”(x)| ≤ M2 for all x. Show that the Newton iteration
converges to x∗ if x0 is “close enough” to x∗. Be precise about “close enough”.
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Some Matlab Functions

LU Factorization

[L,U,P] = LU(X) returns unit lower triangular matrix L, upper
triangular matrix U, and permutation matrix P so that
P*X = L*U.

Cholesky Factorization

R = CHOL(X) returns an upper triangular R so that R’*R = X
where X is symmetric and positive definite.

QR Factorization

[Q,R,E] = QR(A) produces unitary Q, upper triangular R and a
permutation matrix E so that A*E = Q*R. The column permutation E is
chosen so that ABS(DIAG(R)) is decreasing.

Singular Value Decomposition

[U,S,V] = SVD(X) produces a diagonal matrix S, of the same
dimension as X and with nonnegative diagonal elements in
decreasing order, and unitary matrices U and V so that
X = U*S*V’.

Schur Decomposition

[U,D] = SCHUR(X) produces a diagonal matrix D and
an orthogonal matrix U so that X = U*D*U’ assuming that X
is real and symmetric.
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