CS 4220: Review Probs

1.

(a) The unit roundoff EPS is approximately the smallest floating point number x such that 1 4+ z is greater
than 1 in floating point arithmetic. How is EPS related to the floating point mantissa length?

(b) Assuming that a and b is are initialized floating point numbers with positive value, complete the following
conditional so that the message is printed if b is (roughly) less than EPS*a. Do not reference the built-in
constant EPS.

disp(’b is small compared to a’)
end

(¢) Why is the SVD a reliable method for exploring how near a matrix is to being rank-deficient?

2.

(a) We say A € R"*"™ is stochastic if it has positive entries and it has unit column sums. It is known that if
A is stochastic then its dominant eigenvalue A,q. equals 1 and there is a unique z € IR"® with positive entries
so Ax = z. Explain why small changes in A induce corresponding small changes in A\jqq-

(b) Complete the following function so that it performs as specified:

function x = LowerHessSolve(H,b)
% H is a nonsingular n-by-n matrix with H(i,j) = O whenever j>i+l.
% b is a column n-vector
% x satisfies Hx = b.

Make effective use of the LU-with pivoting factorization.

3.

If C € R**" is nonsingular and u,v € R", then the Sherman-Morrison formula gives a recipe for the inverse
of (C' + uvT) if this matrix is nonsingular. In particular,

(C+uwh)™ =C7 ! 4+ aw2”

where w = C 7y, 27 =0vTC~!, and a = —1/(1 +v7C~1u).
By making effective use of the QR factorization, complete the following function so that it performs as
specified:

function [x,z] = DoubleSolve(A,f,g,b)
% A is a nonsingular n-by-n matrix.
% £, g, and b are column n-vectors.
% x and z are column n-vectors with the property that Ax = b and
% (A + fxg’)z = b. (Assume the latter system is nonsingular.)

You may use the backslash operator to solve triangular systems.

4.

The Jacobi method for computing the Schur decomposition of a real symmetric matrix A € IR"*" is based on
solving a sequence 2-by-2 subproblems.



(a) Explain why each subproblem involves O(n) flops.
(b ) What makes the method attractive for parallel computation?

5.

For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas
are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture
for Newton’s method would show the linear model and label its zero.)

(a) The Secant method for finding a zero of f:IR — R.

(b) The Golden Section search method for finding a minimum of f:IR — IR on [L, R] assuming that f” is
always positive.

(c)The steepest descent method with exact line search for finding a minimum of f:IR? — R. (Draw contours.)

6.

Consider the objective function
m

o) = 3 F @) F(x) = 33 Fi(e)

i=1
where F(z) = [F1,..., Fu(z)]t and F;: R" — R. If J. = J(z.) € R™ " is the Jacobian of F at x. then the
gradient of ¢ at z. is given by
ge = J(z)TF, F.=F(x.
and its Hessian by
He=J'Je + > Fi(x)V F(x)
i=1

Refer to the summation as the “messy part of the Hessian.” From calculus we know that

1
d(x.+8) = ¢(xc)+sTgc+§sTHcs + ...

(a) The Gauss-Newton method chooses s by minimizing the quadratic model g.(s) = ¢(z.)+5s7 ge+ 27 JL Jes.
Explain why this leads to a linear least squares problem.

(b) Even though the Gauss-Newton method ignores the messy part of the Hessian, it may still converge
quadratically for certain types of nonlinear least squares problems. Explain.

(c) The Levenberg-Marquardt method replaces the messy part of the Hessian with p2I,. In particular, the
step s is determined by minimizing g.(s) = ¢(zc) + sTge + 28T (JLJ, + p?I)s. How does the least squares
problem in (a) change and why does the SVD make it easy to characterize the minimizing s as a function of
w?

7.
Suppose t,z,y € R™ are given and that we wish to determine p” = [p1, ..., px] and 77 = [r1,...,7%] so that
k 2 k 2
m m
27t . 27t
qb(r,p):z xi—ercos( 1) +Z yi—ersm( 1)
i=1 j=1 Pj i=1 j=1 Pj

is minimized.

(a) Define ¢ in the “language” of matrices, vectors, and norms instead of the language of summations and
subscripts.



(b) Explain how the problem of minimizing ¢ can be approached as a k-parameter nonlinear least squares
problem. Be sure to include in your explanation a definition of the objective function. (You do not have to
discuss its implementation.)

8.

(a) A 3-by-3 linear system with infinity-norm condition 10® is solved via the MATLAB backslash operator \ on
a computer with unit roundoff 10717, Here is the computed solution:

x(1) = 1234.5678901234567
x(2) = 1.2345678901234567
x(3) = .00012345678901234567

Underline the digits that are most likely correct and explain why. Recall that || v ||, = max |v;].

(b) We wish to do a least squares fitting of a function of the form f(t) = a+B3e* to the data (t1, 1), - ., (tm, Ym)-
Assume that y1 > yo > - >y, and 0 < t1 <ty < - -+ < t,,, with m > 2. Explain why small relative changes
in the data might induce large relative changes in the optimal fitting function. Be brief.

9.

(a) Suppose A € IR**" is symmetric and positive definite, b € R”, and h > 0. We wish to evaluate
fz) =b"(A+20)" 1D

for z = h, 2h,...,mh where m >> n. Complete the following function so that it performs as specified.

function fVals = ManySolve(A,b,h,m)
% A is an n-by-n symmetric positive definite matrix and b is n-by-1.
% h>0 and m is a positive integer.
% fVals is a column m-vector with fVals(k) = b’*inv(A+khI)*b, k=1:m

Hint: Picking the right factorization can make each f-evaluation O(n).

(b) Suppose A € IR™*™ is symmetric and positive definite and ¢, d € IR". We wish to solve the following linear

system for y, z € R™:
A A yl| _|c
A —-A z | | d

Write a Matlab function [y,z] = BigSolve(A,c,d) that does this. Do not use the backslash operator \ except
to solve triangular systems.

10.

For each of the following methods, draw a picture that communicates the main idea behind a step. No formulas
are necessary. Just a labeled sketch that graphically indicates how the next iterate is obtained. (Such a picture
for Newton’s method would show the linear model and label its zero.)

(a) The Secant method for finding a zero of f:IR — R.

(b) The Golden Section search method for finding a minimum of f:IR — IR on [L, R] assuming that f” is
always positive.

(c) The steepest descent method with exact line search for finding a minimum of f:IR? — R. (Draw contours.)

11.



(a) Assume that § is greater than the unit roundoff and that each entry in a data matrix A € R™*" has
relative error =~ ¢. How would you estimate the rank of A from the QR-with-column-pivoting factorization?
Recall that in that factorization ryj is the largest entry in the submatrix R(k:m, k:n). Justify your answer
by explaining the amount of error that we can expect in the computed R. Order-of-magnitude reasoning is
absolutely fine.

(b) When solving a rank-deficient least squares problem, why might one prefer QR-with-column-pivoting
method to the singular value decomposition method? Be brief.

12.

To find a zero z, of a function f we can apply Newton’s method:

f(xk)

$k+1=$k—f,(xk) =0,1,...
It can be shown that o
Th4+1 — x*| = f’(xZ) |xk — T« 2

where 7 is in between x, and xy.

(a) This means that the order of convergence for Newton’s method is 2. The secant method has order = 1.6.
Does this mean that the Newton’s method will reqire fewer iterations? Explain.

(b) Assume that |f/(z)] > ¢ > 0 for all z and that |f”(z)| < M for all z. Show that the Newton iteration
converges to x, if g is “close enough” to x.. Be precise about “close enough”.



Some MATLAB Functions

LU Factorization

[L,U,P] = LU(X) returns unit lower triangular matrix L, upper
triangular matrix U, and permutation matrix P so that
PxX = Lx*U.

Cholesky Factorization

R = CHOL(X) returns an upper triangular R so that R’*R = X
where X is symmetric and positive definite.

QR Factorization

[Q,R,E] = QR(A) produces unitary Q, upper triangular R and a
permutation matrix E so that A*E = Q*R. The column permutation E is
chosen so that ABS(DIAG(R)) is decreasing.

Singular Value Decomposition

[U,S,V] = SVD(X) produces a diagonal matrix S, of the same
dimension as X and with nonnegative diagonal elements in
decreasing order, and unitary matrices U and V so that

X = UxS*V’.

Schur Decomposition

[U,D] = SCHUR(X) produces a diagonal matrix D and
an orthogonal matrix U so that X = U*D*U’ assuming that X
is real and symmetric.



