
Chapter 2

Polynomial Interpolation

§2.1 The Vandermonde Approach

§2.2 The Newton Approach

§2.3 Properties

§2.4 Special Topics

In the problem of data approximation, we are given some points (x1, y1), . . . , (xn, yn) and are asked to find
a function φ(x) that “captures the trend” of the data. If the trend is one of decay, then we may seek a φ of
the form a1e

−λ1x + a2e
−λ2x. If the trend of the data is oscillatory, then a trigonometric approximant might

be appropriate. Other settings may require a low-degree polynomial. Regardless of the type of function
used, there are many different metrics for success, e.g., least squares.

A special form of the approximation problem ensues if we insist that φ actually “goes through” the data,
as shown in Figure 2.1. This means that φ(xi) = yi, i = 1:n and we say that φ interpolates the data. The
polynomial interpolation problem is particularly important:

Given x1, . . . , xn (distinct) and y1, . . . , yn, find a polynomial pn−1(x) of
degree n− 1 (or less) such that pn−1(xi) = yi for i = 1:n.

Thus, p2(x) = 1 + 4x− 2x2 interpolates the points (−2,−15), (3,−5), and (1, 3).
Each (xi, yi) pair can be regarded as a snapshot of some function f(x): yi = f(xi). The function f may

be explicitly available, as when we want to interpolate sin(x) at x = 0, π/2, and π with a quadratic. On
other occasions, f is implicitly defined, as when we want to interpolate the solution to a differential equation
at a discrete number of points.

The discussion of polynomial interpolation revolves around how it can be represented, computed, and
evaluated:

• How do we represent the interpolant pn−1(x)? Instead of expressing the interpolant in terms of the
“usual” basis polynomials 1, x, and x2, we could use the alternative basis 1, (x+2), and (x+2)(x−3).
Thus,

p2(x) = −15 + 2(x + 2)− 2(x + 2)(x− 3)

is another way to express the quadratic interpolant of the data (−2,−15), (3,−5), and (1, 3). Different
bases have different computational virtues.

• Once we have settled on a representation for the polynomial interpolant, how do we determine the
associated coefficients? It turns out that this aspect of the problem involves the solution of a linear
system of equations with a highly structured coefficient matrix.

1

2 CHAPTER 2. POLYNOMIAL INTERPOLATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 2.1 The interpolation of four data points with a cubic polynomial

• After we have computed the coefficients, how can the interpolant be evaluated with efficiency? For
example, if the interpolant is to be plotted then we are led to the problem of evaluating a polynomial
on a vector of values.

In Matlab these issues can be handled by polyfit and polyval. The script

x = [-2 3 1];

y = [-15 -5 3];

a = polyfit(x,y,2)

xvals = linspace(-3,2,100);

pvals = polyval(a,xvals);

plot(xvals,pvals)

plots the polynomial interpolant of the data (−2,−15), (3,−5), and (1, 3). The interpolant is given by
p(x) = 1 + 4x− 2x2 and the call to polyfit computes a representation of this polynomial. In particular, a
is assigned the vector [-2 4 1].

In general, if x and y are n-vectors, then a = polyfit(x,y,n-1) assigns a length-n vector to a with the
property that the polynomial

p(x) = an + an−1x + an−2x
2 + · · ·+ a1x

n−1

interpolates the data (x1, y1), . . . , (xn, yn).

The function polyval is used to evaluate polynomials in the Matlab representation. In the above script
polyval(a,xvals) is a vector of interpolant evaluations.

In this chapter we start with what we call the “Vandermonde” approach to the polynomial interpolation
problem. The Newton representation is considered in §2.2 and accuracy issues in §2.3. Divided differences,
inverse interpolation, interpolation in the plane, and trigonmetric interpolation are briefly discussed in §2.4.

2.1 The Vandermonde Approach

In the Vandermonde approach, the interpolant is expressed as a linear combination of 1, x, x2, etc. Al-
though monomials are not the best choice for a basis, our familiarity with this way of “doing business” with
polynomials makes them a good choice to initiate the discussion.

2.1. THE VANDERMONDE APPROACH 3

2.1.1 A Four-point Interpolation Problem

Let us find a cubic polynomial

p3(x) = a1 + a2x + a3x
2 + a4x

3

that interpolates the four data points (−2, 10), (−1, 4), (1, 6), and (2, 3). Note that this is the “reverse” of
Matlab ’s convention for representing polynomials. 1 Each point of interpolation leads to a linear equation
that relates the four unknowns a1, a2, a3, and a4:

p3(−2) = 10 ⇒ a1 − 2a2 + 4a3 − 8a4 = 10
p3(−1) = 4 ⇒ a1 − a2 + a3 − a4 = 4
p3(1) = 6 ⇒ a1 + a2 + a3 + a4 = 6
p3(2) = 3 ⇒ a1 + 2a2 + 4a3 + 8a4 = 3

Expressing these four equations in matrix/vector terms gives





1 −2 4 −8
1 −1 1 −1
1 1 1 1
1 2 4 8









a1

a2

a3

a4



 =





10
4
6
3



 .

The solution a = [4.5000 1.9167 0.5000 − 0.9167]T to this 4-by-4 system can be found as follows:

y = [10; 4; 6; 3];

V = [1 -2 4 -8; 1 -1 1 -1; 1 1 1 1; 1 2 4 8];

a = V\y;

2.1.2 The General n Case

From this example, it looks like the polynomial interpolation problem reduces to a linear equation problem.
For general n, the goal is to determine a1, . . . , an so that if

pn−1(x) = a1 + a2x + a3x
2 + · · ·+ anxn−1,

then

pn−1(xi) = a1 + a2xi + a3x
2
i + · · ·+ anxn−1

i = yi

for i = 1:n. By writing these equations in matrix-vector form, we obtain





1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2

1 x3 x2
3 · · · xn−1

3
...

...
...

. . .
...

1 xn x2
n · · · xn−1

n









a1

a2

a3

...

an





=





y1

y2

y3

...

yn





.

Designate the matrix of coefficients by V . The solvability of the interpolation problem hinges on the non-
singularity of V . Suppose there is a vector c such that V c = 0. It follows that the polynomial

q(x) = c1 + c2x + · · ·+ cnxn−1

is zero at x = x1, . . . , x = xn. This says that we have a degree n − 1 polynomial with n roots. The only
way that this can happen is if q is the zero polynomial (i.e., c = 0). Thus V is nonsingular because the only
vector that it zeros is the zero vector.

1Matlab would represent the sought-after cubic as p3 = a4 + a3x + a2x2 + a1x3. Our chosen style is closer to what one
would find in a typical math book: p3(x) = a0 + a1x + a2x2 + a3x3.

4 CHAPTER 2. POLYNOMIAL INTERPOLATION

2.1.3 Setting Up and Solving the System

Let us examine the construction of the Vandermonde matrix V . Our first method is based on the observation
that the ith row of V involves powers of xi and that the powers increase from 0 to n−1 as the row is traversed
from left to right. A conventional double-loop approach gives

n = length(x); V = zeros(n,n);

for i=1:n

% Set up row i.

for j=1:n

V(i,j) = x(i)̂(j-1);
end

end

Algorithms that operate on a two-dimensional array in row-by-row fashion are row oriented.
The inner-loop in the preceding script can be vectorized because Matlab supports pointwise exponenti-

ation. For example, u = [1 2 3 4] .̂[3 5 2 3] assigns to u the row vector [1 32 9 64]. The i-th row of
V requires exponentiating the scalar xi to each of the values in the row vector 0:n− 1 = (0, 1, . . . , n− 1).
Thus, row = (x(i)*ones(1,n)).̂(0:n-1) assigns the vector (1, xi, x

2
i , . . . , x

n−1
i) to row, precisely the val-

ues that make up the ith row of V . The ith row of a matrix V may be referenced by V(i,:), and so we
obtain

n = length(x); V = zeros(n,n);

for i=1:n

% Set up the i-th row of V.

V(i,:) = (x(i)*ones(1,n)).̂(0:n-1);
end

By reversing the order of the loops in the original set-up script, we obtain a column oriented algorithm:

n = length(x); V = zeros(n,n);

for j=1:n

% Set up column j.

for i=1:n

V(i,j) = x(i)̂(j-1);
end

end

If j > 1, then V (i, j) is the product of x(i) and V (i, j − 1), the matrix entry to its left. This suggests that
the required exponentiations can be obtained through repeated multiplication:

n = length(x);

V = ones(n,n);

for j=2:n

% Set up column j.

for i=1:n

V(i,j) = x(i)*V(i,j-1)

end

end

The generation of the jth column involves pointwise vector multiplication:




x1

...
xn



 . ∗




v1,j−1

...
vn,j−1



 =




v1,j

...
vn,j



 .

This may be implemented by V(:,j) = x .* V(:,j-1). Basing our final implementation on this, we obtain

2.1. THE VANDERMONDE APPROACH 5

function a = InterpV(x,y)

% a = InterpV(x,y)

% This computes the Vandermonde polynomial interpolant where

% x is a column n-vector with distinct components and y is a

% column n-vector.

%

% a is a column n-vector with the property that if

%

% p(x) = a(1) + a(2)x + ... a(n)x^(n-1)

% then

% p(x(i)) = y(i), i=1:n

n = length(x);

V = ones(n,n);

for j=2:n

% Set up column j.

V(:,j) = x.*V(:,j-1);

end

a = V\y;

Column-oriented, matrix-vector implementations will generally be favored in this text. One reason for doing
this is simply to harmonize with the traditions of linear algebra, which is usually taught with a column-
oriented perspective.

2.1.4 Nested Multiplication

We now consider the evaluation of pn−1(x) = a1 + · · ·+ anxn−1 at x = z, assuming that z and a(1:n) are
available. The routine approach

n = length(a);

zpower = 1;

pVal = a(1);

for i=2:n

zpower = z*zpower;

pVal = pVal + a(i)*zpower;

end

assigns the value of pn−1(z) to pVal.
A more efficient algorithm is based on a nested organization of the polynomial, which we illustrate for

the case n = 4:

p3(x) = a1 + a2x + a3x
2 + a4x

3 = ((a4x + a3)x + a2)x + a1.

Note that the fragment

pVal = a(4);

pVal = z*pVal + a(3);

pVal = z*pVal + a(2);

pVal = z*pVal + a(1);

assigns the value of p3(z) to pVal. For general n, this nested multiplication idea takes on the following form:

n = length(a);

pVal = a(n);

for i=n-1:-1:1

pVal = z*pVal + a(i);

end

6 CHAPTER 2. POLYNOMIAL INTERPOLATION

This is widely known as Horner’s rule.
Before we encapsulate the Horner idea in a Matlab function, let us examine the case when the interpolant

is to be evaluated at many different points. To be precise, suppose z(1:m) is initialized and that for i = 1:m,
we want to assign the value of pn−1(z(i)) to pVal(i). One obvious approach is merely to repeat the preceding
Horner iteration at each point. Instead, we develop a vectorized implementation that can be obtained if
we think about the “simultaneous” evaluation of the interpolants at each zi. Suppose m = 5 and n = 4
(i.e, the case when a cubic interpolant is to be evaluated at five different points). The first step in the five
applications of the Horner idea may be summarized as follows:





pVal(1)

pVal(2)

pVal(3)

pVal(4)

pVal(5)




=





a(4)

a(4)

a(4)

a(4)

a(4)




.

In vector terms pVal = a(n)*ones(m,1). The next step requires a multiply-add of the following form:





pVal(1)

pVal(2)

pVal(3)

pVal(4)

pVal(5)




=





z(1)*pVal(1)

z(2)*pVal(2)

z(3)*pVal(3)

z(4)*pVal(4)

z(5)*pVal(5)




+





a(3)

a(3)

a(3)

a(3)

a(3)




.

That is,

pVal = z.*pVal + a(3)

The pattern is clear for the cubic case:

pVal = a(4)*ones(m,1);

pVal = z .* pVal + a(3);

pVal = z .* pVal + a(2);

pVal = z .* pVal + a(1);

From this we generalize to the following:

function pVal = HornerV(a,z)

% pVal = HornerV(a,z)

% evaluates the Vandermonde interpolant on z where

% a is an n-vector and z is an m-vector.

%

% pVal is a vector the same size as z with the property that if

%

% p(x) = a(1) + .. +a(n)x^(n-1)

% then

% pVal(i) = p(z(i)) , i=1:m.

n = length(a);

m = length(z);

pVal = a(n)*ones(size(z));

for k=n-1:-1:1

pVal = z.*pVal + a(k);

end

Each update of pval requires 2m flops so approximately 2mn flops are required in total.
As an application, here is a script that displays cubic interpolants of sin(x) on [0, 2π]. The abscissas are

chosen randomly.

2.1. THE VANDERMONDE APPROACH 7

% Script File: ShowV

% Plots 4 random cubic interpolants of sin(x) on [0,2pi].

% Uses the Vandermonde method.

close all

x0 = linspace(0,2*pi,100)’;

y0 = sin(x0);

for eg=1:4

x = 2*pi*sort(rand(4,1));

y = sin(x);

a = InterpV(x,y);

pVal = HornerV(a,x0);

subplot(2,2,eg)

plot(x0,y0,x0,pVal,’--’,x,y,’*’)

axis([0 2*pi -2 2])

end

Figure 2.2 displays a sample output.

0 2 4 6
−2

−1

0

1

2

0 2 4 6
−2

−1

0

1

2

0 2 4 6
−2

−1

0

1

2

0 2 4 6
−2

−1

0

1

2

Figure 2.2 Random cubic interpolants of sin(x) on [0, 2π]

Problems

P2.1.1 Instead of expressing the polynomial interpolant in terms of the basis functions 1, x, . . . , xn−1, we can work with the
alternative representation

pn−1(x) =

n
X

k=1

ak

„

x − u

v

«k−1

.

Here u and v are scalars that serve to shift and scale the x-range. Generalize InterpV so that it can be called with either two,
three, or four arguments. A call of the form a = InterpV(x,y) should assume that u = 0 and v = 1. A call of the form a =

InterpV(x,y,u) should assume that v = 1 and that u houses the shift factor. A call of the form a = InterpV(x,y,u,v) should
assume that u and v house the shift and scale factors, respectively.

P2.1.2 A polynomial of the form
p(x) = a1 + a2x2 + · · · + amx2m−2

is said to be even, while a polynomial of the form

p(x) = a1x + a3x3 + · · · + amx2m−1

is said to be odd. Generalize HornerV(a,z) so that it has an optional third argument type that indicates whether or not the
underlying polynomial is even or odd. In particular, a call of the form HornerV(a,z,’even’) should assume that ak is the
coefficient of x2k−2. A call of the form HornerV(a,z,’odd’) should assume that ak is the coefficient of x2k−1.

8 CHAPTER 2. POLYNOMIAL INTERPOLATION

P2.1.3 Assume that z and a(1:n) are initialized and define

p(x) = a1 + a2x + · · · + anxn−1.

Write a script that evaluates (1) p(z)/p(−z), (2) p(z) + p(−z), (3) p′(z), (4)
R 1
0 p(x)dx, and (e)

R z

−z
p(x)dx. Make effective use

of HornerV.

P2.1.4 (a) Assume that L (scalar), R (scalar), and c(1:4) are given. Write a script that computes a(1:4) so that if p(x) =
a1 + a2x + a3x2 + a4x3, then p(L) = c1, p′(L) = c2, p′′(L) = c3, and p(R) = c4. Use \ to solve any linear system
that arises in your method. (b) Write a function a = TwoPtInterp(L,cL,R,cR) that returns the coefficients of a polynomial
p(x) = a1 +a2x+ · · ·+anxn that satisfies p(k−1)(L) = cL(k) for k = 1:length(cL) and p(k−1)(R) = cR(k) for k = 1:length(cR).
The degree of p should be one less than the total number of end conditions. (The problem of determining a cubic polynomial
whose value and slope are prescribed at two points is discussed in detail in §3.2.1. It is referred to as the cubic Hermite

interpolation problem.)

P2.1.5 Write a function PlotDerPoly(x,y) that plots the derivative of the polynomial interpolant of the data (xi, yi), i = 1:n.
Assume that x1 < · · · < xn and the plot should be across the interval [x1, xn]. Use polyfit and polyval.

2.2 The Newton Representation

We now look at a form of the polynomial interpolant that is generally more useful than the Vandermonde
representation.

2.2.1 A Four-Point Example

To motivate the idea, consider once again the problem of interpolating the four points (x1, y1), (x2, y2),
(x3, y3), and (x4, y4) with a cubic polynomial p3(x). However, instead of expressing the interpolant in terms of
the “canonical” basis 1, x, x2, and x3, we use the basis 1, (x−x1), (x−x1)(x−x2), and (x−x1)(x−x2)(x−x3).
This means that we are looking for coefficients c1, c2, c3, and c4 so that if

p3(x) = c1 + c2(x− x1) + c3(x − x1)(x − x2) + c4(x− x1)(x− x2)(x− x3), (2.1)

then yi = p3(xi) = yi for i = 1:4. In expanded form, these four equations state that

y1 = c1

y2 = c1 + c2(x2 − x1)

y3 = c1 + c2(x3 − x1) + c3(x3 − x1)(x3 − x2)

y4 = c1 + c2(x4 − x1) + c3(x4 − x1)(x4 − x2) + c4(x4 − x1)(x4 − x2)(x4 − x3).

By rearranging these equations, we obtain the following four-step solution process:

c1 = y1

c2 =
y2 − c1

x2 − x1

c3 =
y3 − (c1 + c2(x3 − x1))

(x3 − x1)(x3 − x2)

c4 =
y4 − (c1 + c2(x4 − x1) + c3(x4 − x1)(x4 − x2))

(x4 − x1)(x4 − x2)(x4 − x3)
.

This sequential solution process is made possible by the clever choice of the basis polynomials and the result
is the Newton representation of the interpolating polynomial.

2.2. THE NEWTON REPRESENTATION 9

To set the stage for the general-n algorithm, we redo the n = 4 case using matrix-vector notation
to discover a number of simplifications. The starting point is the system of equations that we obtained
previously which can be expressed in the following form:





1 0 0 0
1 (x2 − x1) 0 0
1 (x3 − x1) (x3 − x1)(x3 − x2) 0
1 (x4 − x1) (x4 − x1)(x4 − x2) (x4 − x1)(x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y2

y3

y4



 .

From this we see immediately that c1 = y1. We can eliminate c1 from equations 2, 3, and 4 by subtracting
equation 1 from equations 2, 3, and 4:





1 0 0 0
0 (x2 − x1) 0 0
0 (x3 − x1) (x3 − x1)(x3 − x2) 0
0 (x4 − x1) (x4 − x1)(x4 − x2) (x4 − x1)(x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y2 − y1

y3 − y1

y4 − y1



 .

If we divide equations 2, 3, and 4 by (x2 − x1), (x3 − x1), and (x4 − x1), respectively, then the system
transforms to





1 0 0 0
0 1 0 0
0 1 (x3 − x2) 0
0 1 (x4 − x2) (x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y21

y31

y41



 ,

where y21, y31, and y41 are defined by

y21 =
y2 − y1

x2 − x1
y31 =

y3 − y1

x3 − x1
y41 =

y4 − y1

x4 − x1
.

Notice that



y21

y31

y41



 =








y2

y3

y4



−




y1

y1

y1







 ./








x2

x3

x4



−




x1

x1

x1







 = (y(2:4)− y(1))./(x(2:4)− x(1)).

The key point is that we have reduced the size of problem by one. The remaining unknowns satisfy a 3-by-3
system:




1 0 0
1 (x3 − x2) 0
1 (x4 − x2) (x4 − x2)(x4 − x3)








c2

c3

c4



 =




y21

y31

y41



 .

This is exactly the system obtained were we to seek the coefficients of the quadratic

q(x) = c2 + c3(x− x2) + c4(x− x2)(x− x3)

that interpolates the data (x2, y21), (x3, y31), and (x4, y41).

2.2.2 The General n Case

For general n, we see that if c1 = y1 and

q(x) = c2 + c3(x − x2) + · · ·+ cn(x− x2) · · · (x− xn−1)

10 CHAPTER 2. POLYNOMIAL INTERPOLATION

interpolates the data (
xi,

yi − y1

xi − x1

)
i = 2:n,

then

p(x) = c1 + (x− x1)q(x)

interpolates (x1, y1), . . . , (xn, yn). This is easy to verify. Indeed, for j = 1:n

p(xj) = c1 + (xj − x1)q(xj) = y1 + (xj − x1)
yj − y1

xj − x1
= yj.

This sets the stage for a recursive formulation of the whole process:

function c = InterpNRecur(x,y)

% c = InterpNRecur(x,y)

% The Newton polynomial interpolant.

% x is a column n-vector with distinct components and y is

% a column n-vector. c is a column n-vector with the property that if

%

% p(x) = c(1) + c(2)(x-x(1))+...+ c(n)(x-x(1))...(x-x(n-1))

% then

% p(x(i)) = y(i), i=1:n.

n = length(x); c = zeros(n,1); c(1) = y(1);

if n > 1

c(2:n) = InterpNRecur(x(2:n),(y(2:n)-y(1))./(x(2:n)-x(1)));

end

If n = 1, then the constant interpolant p(x) ≡ y1 is returned (i.e., c1 = y1.) Otherwise, the final c-vector is
a “stacking” of y1 and the solution to the reduced problem. The recursive call obtains the coefficients of the
interpolant q(x) mentioned earlier.

To develop a nonrecursive implementation, we return to our four-point example and the equation





1 0 0 0
0 1 0 0
0 1 (x3 − x2) 0
0 1 (x4 − x2) (x4 − x2)(x4 − x3)









c1

c2

c3

c4



 =





y1

y21

y31

y41



 .

From this we see that c2 = y21. Now subtract equation 2 from equation 3 and divide by (x3 − x2). Next,
subtract equation 2 from equation 4 and divide by (x4 − x2). With these operations we obtain





1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 (x4 − x3)









c1

c2

c3

c4



 =





y1

y21

y321

y421



 ,

where

y321 =
y31 − y21

x3 − x2
y421 =

y41 − y21

x4 − x2
.

At this point we see that c3 = y321. Finally, by subtracting the third equation from the fourth equation and
dividing by (x4 − x3), we obtain





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









c1

c2

c3

c4



 =





y1

y21

y321

y4321



 ,

2.2. THE NEWTON REPRESENTATION 11

where

y4321 =
y421 − y321

x4 − x3
.

Clearly, c4 = y4321. The pattern for the general n case should be apparent:

for k=1:n-1

ck = yk

for j = k + 1:n
Subtract equation k from equation j and divide the result by (xj − xk).

end

end

cn = yn

However, when updating the equations we need only keep track of the changes in the y-vector. For example,

y(k + 1:n) ←








yk+1

...
yn



−




yk

...
yk







 ./








xk+1

...
xn



−




xk

...
xk









= (y(k + 1:n)− y(k)) ./ (x(k + 1)− x(k)).

This leads to

function c = InterpN(x,y)

% c = InterpN(x,y)

% The Newton polynomial interpolant.

% x is a column n-vector with distinct components and y is

% a column n-vector. c is a column n-vector with the property that if

%

% p(x) = c(1) + c(2)(x-x(1))+...+ c(n)(x-x(1))...(x-x(n-1))

% then

% p(x(i)) = y(i), i=1:n.

n = length(x);

for k = 1:n-1

y(k+1:n) = (y(k+1:n)-y(k)) ./ (x(k+1:n) - x(k));

end

c = y;

2.2.3 Nested Multiplication

As with the Vandermonde representation, the Newton representation permits an efficient nested multiplica-
tion scheme. For example, to evaluate p3(x) at x = z, we have the nesting

p3(x) = ((c4(x− x3) + c3)(x− x2) + c2)(x − x1) + c1.

The fragment

pVal = c(4);

pVal = (z-x(3))*pVal + c(3);

pVal = (z-x(2))*pVal + c(2);

pVal = (z-x(1))*pVal + c(1);

assigns the value of p3(z) to pVal. If z is a vector, then this becomes

pVal = c(4)*ones(size(z));

pVal = (z-x(3)).*pVal + c(3);

pVal = (z-x(2)).*pVal + c(2);

pVal = (z-x(1)).*pVal + c(1);

12 CHAPTER 2. POLYNOMIAL INTERPOLATION

In general, we have

function pVal = HornerN(c,x,z)

% pVal = HornerN(c,x,z)

% Evaluates the Newton interpolant on z where c and x are n-vectors, z is an

% m-vector, and pVal is a vector the same size as z with the property that if

%

% p(x) = c(1) + c(2)(x-x(1))+ ... + c(n)(x-x(1))...(x-x(n-1))

% then

% pVal(i) = p(z(i)) , i=1:m.

n = length(c);

pVal = c(n)*ones(size(z));

for k=n-1:-1:1

pVal = (z-x(k)).*pVal + c(k);

end

The script ShowN illustrates HornerN and InterpN.

Problems

P2.2.1 Write a Matlab function a = N2V(c,x), where c is a column n-vector, x is a column (n − 1)-vector and a is a column
n-vector, so that if

p(x) = c1 + c2(x − x1) + · · · + cn(x − x1)(x − x2) · · · (x − xn−1),

then
p(x) = a1 + a2x + · · · + anxn−1.

In other words, N2V converts from the Newton representation to the Vandermonde representation.

P2.2.2 Suppose we are given the data (xi, yi), i = 1:n. Assume that the xi are distinct and that n ≥ 2. Let pL(x) and pR(x)
be degree n − 2 polynomials that satisfy

pL(xi) = yi i = 1:n − 1

pR(xi) = yi i = 2:n.

Note that if

p(x) =
(x − xn)pL(x) − (x − x1)pR(x)

x1 − xn

,

then p(xi) = yi, i = 1:n. In other words, p(x) is the unique degree n − 1 interpolant of (xi, yi), i = 1:n. Using this result,
complete the following function:

function pVal = RecurEval(x,y,z);

%

% x is column n-vector with distinct entries, y is a column n-vector, and z is

% a column m-vector.

%

% pVal is a column m-vector with the property that pVal(i) = p(z(i))

% where p(x) is the degree n-1 polynomial interpolant of (x(i),y(i)), i=1:n.

The implementation should be recursive and vectorized. No loops are necessary! Use RecurEval to produce an interpolant of
sin(2πx) at x = 0:.25:1.

P2.2.3 Write a Matlab script that solicits the name of a built-in function (as a string), the left and right limits of an interval
[L,R], and a positive integer n and then displays both the function and the n − 1 degree interpolant of it at linspace(L,R,n).

P2.2.4 Assume that n, z(1:n), L, R, and a(1:6) are available. Write an efficient Matlab script that assigns to q(i) the value
of the polynomial

q(x) = a1 + a2(x − L) + a3(x − L)2 + a4(x − L)3 + a5(x − L)3(x − R) + a6(x − L)3(x − R)2

at x = zi, i = 1:n. It doesn’t matter whether q(1:n) is a row vector or a column vector.

P2.2.5 Write a Matlab script that plots a closed curve

(px(t), py(t)) 0 ≤ t ≤ 1

that passes through the points (0,0), (0,3), (4,0). The functions px and py should be cubic polynomials. Make effective use of
InterpN and HornerN. The plot should be based on one hundred evaluations of px and py .

2.3. PROPERTIES 13

2.3 Properties

With two approaches to the polynomial interpolation problem, we have an occasion to assess their relative
merits. Speed and accuracy are the main concerns.

2.3.1 Efficiency

One way to talk about the efficiency of a numerical method such as InterpV or InterpN is to relate the
number of required flops to the “length” of the input. For InterpV, the amount of required arithmetic grows
as the cube of n, the number of interpolation points. We say that InterpV is an O(n3) method meaning that
work goes up by a factor of 8 if n is doubled. (An n-by-n linear equation solve requires about 2n3/3 flops.)
On the other hand, InterpN is an O(n2) method. If we double n then work increases by an approximate
factor of 4.

Generally speaking quadratic methods (like InterpN) are to be preferred to cubic methods (like InterpV)
especially for large values of n. However, the “big-oh” predictions are typically not realized in practice for
small values of n. Moreover, counting flops does not take into account overheads associated with function
calls and memory access. Benchmarking these two methods using tic and toc would reveal that they are
not terribly different for modest n.

So far we have just discussed execution efficiency. Memory efficiency is also important. InterpV requires
an n-by-n array, while InterpN needs just a few n-vectors. In this case we say that InterpV is quadratic in
memory while InterpN is linear in memory.

2.3.2 Accuracy

We know that the polynomial interpolant exists and is unique, but how well does it approximate? The
answer to the question depends on the derivatives of the function that is being interpolated.

Theorem 2 Suppose pn−1(x) interpolates the function f(x) at the distinct points x1, . . . , xn. If f is n times
continuously differentiable on an interval I containing the xi, then for any x ∈ I

f(x) = pn−1(x) +
f(n)(η)

n!
(x− x1) · · · (x− xn)

where a ≤ η ≤ b.

Proof For clarity and with not a tremendous loss of generality, we prove the theorem for the n = 4 case.
Consider the function

F (t) = f(t) − p3(t) − cL(t),

where

c =
f(x) − p3(x)

(x − x1)(x − x2)(x− x3)(x− x4)

and L(t) = (t − x1)(t − x2)(t − x3)(t − x4). Note that F (x) = 0 and F (xi) = 0 for i = 1:4. Thus, F has at
least five zeros in I. In between these zeros F ′ has a zero and so F ′ has at least four zeros in I. Continuing
in this way, we conclude that

F (4)(t) = f(4)(t)− p
(4)
3 (t) − cL(4)(t)

has at least one zero in I which we designate by ηx. Since p3 has degree ≤ 3, p
(4)
3 (t) ≡ 0. Since L is a monic

polynomial with degree 4, L
(4)
3 (t) = 4!. Thus,

0 = F (4)(ηx) = f(4)(ηx)− p
(4)
3 (ηx)− cL(4)(ηx) = f(4)(ηx)− c · 4!. �

This result shows that the quality of pn−1(x) depends on the size of the nth derivative. If we have a bound
on this derivative, then we can compute a bound on the error. To illustrate this point in a practical way,
suppose |f(n)(x)| ≤Mn for all x ∈ [a, b]. It follows that for any z ∈ [a, b] we have

|f(z) − pn−1(z)| ≤ Mn

n!
max

a≤x≤b
|(x− x1)(x− x2) · · · (x− xn)|.

14 CHAPTER 2. POLYNOMIAL INTERPOLATION

If we base the interpolant on the equally spaced points

xi = a +

(
b− a

n− 1

)
(i− 1), i = 1:n

then, by a simple change of variable,

|f(z) − pn−1(z)| ≤Mn

(
b− a

n− 1

)n

max
0≤s≤n−1

∣∣∣∣
s(s− 1) · · · (s− n + 1)

n!

∣∣∣∣ .

It can be shown that the max is no bigger than 1/(4n), from which we conclude that

|f(z) − pn−1(z)| ≤ Mn

4n

(
b − a

n− 1

)n

. (2.2)

Thus, if a function has ill-behaved higher derivatives, then the quality of the polynomial interpolants may
actually decrease as the degree increases.

A classic example of this is the problem of interpolating the function f(x) = 1/(1 + 25x2) across the
interval [−1, 1]. See Figure 2.3. While the interpolant “captures” the trend of the function in the middle
part of the interval, it blows up near the endpoints. The script RungeEg explores the phenomenon in greater
detail.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2
Equal Spacing (n = 11)

Figure 2.3 The Runge phenomenon

Problems

P2.3.1 Write a Matlab script that compares HornerN and HornerV from the flop point of view.

P2.3.2 Write a Matlab script that repeatedly solicits an integer n and produces a reasonable plot of the function e(s) =
|s(s− 1) · · · (s− n + 1)/n!| on the interval [0, n − 1]. Verify experimentally that this function is never bigger than 1, a fact that
we used to establish (2.2).

P2.3.3 Write a Matlab function nBest(L,R,a,delta) that returns an integer n such that if pn−1(x) interpolates eax at
L + (i− 1)(R−L)/(n− 1), i = 1:n, then |pn−1(z) − eaz | ≤ δ for all z ∈ [L, R]. Try to make the value of n as small as you can.

2.4 Special Topics

As a follow-up to the preceding developments, we briefly discuss properties and algorithms associated with
divided differences, inverse interpolation, and two-dimensional linear interpolation. We also introduce the
important idea of trigonometric interpolation.

2.4. SPECIAL TOPICS 15

2.4.1 Divided Differences

Returning to the n = 4 example used in the previous section, we can express c1, c2, c3, and c4 in terms of
the xi and f :

c1 = f(x1)

c2 =
f(x2)− f(x1)

x2 − x1

c3 =

f(x3)− f(x1)

x3 − x1

−
f(x2) − f(x1)

x2 − x1

x3 − x2

c4 =

f(x4)− f(x1)

x4 − x1

−
f(x2)− f(x1)

x2 − x1

x4 − x2
−

f(x3)− f(x1)

x3 − x1

−
f(x2) − f(x1)

x2 − x1

x3 − x2

x4 − x3
.

The coefficients are called divided differences. To stress the dependence of ck on f and x1, . . . , xk, we write

ck = f [x1, . . . , xk]

and refer to this quantity as the k − 1st order divided difference. Thus,

pn−1(x) =

n∑

k=1

f [x1, . . . , xk]




k−1∏

j=1

(x− xj)





is the n-point polynomial interpolant of f at x1, . . . , xn.
We now establish another recursive property that relates the divided differences of f on designated subsets

of {x1, . . . , xn}. Suppose pL(x) and pR(x) are the interpolants of f on {x1, . . . , xk−1} and {x2, . . . , xk},
respectively. It is easy to confirm that if

p(x) =
(x− xk)pL(x)− (x − x1)pR(x)

x1 − xk

, (2.3)

then p(xi) = f(xi), i = 1:k. Thus p(x) is the interpolant of f on {x1, . . . , xk} and so

p(x) = f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xn](x− x1) · · · (x− xk−1). (2.4)

Note that since

pL(x) = f [x1] + f [x1, x2](x− x1) + · · ·+ f [x1, . . . , xk−1](x− x1) · · · (x− xk−2),

the coefficient of xk−2 is given by f [x1, . . . , xk−1]. Likewise, since

pR(x) = f [x2] + f [x2, x3](x− x2) + · · ·+ f [x2, . . . , xk](x− x2) · · · (x− xk−1),

the coefficient of xk−2 is given by f [x2, . . . , xk]. Comparing the coefficients of xk−1 in (2.3) and (2.4), we
conclude that

f [x1, . . . , xk] =
f [x2, . . . , xk]− f [x1, . . . , xk−1]

xk − x1
. (2.5)

16 CHAPTER 2. POLYNOMIAL INTERPOLATION

f [x1, x2]

f [x1] f [x2]

A
A

�
�

f [x2, x3]

f [x2] f [x3]

A
A

�
�

f [x2, x3]

f [x2] f [x3]

A
A

�
�

f [x3, x4]

f [x3] f [x4]

A
A

�
�

f [x2, x3]

f [x2] f [x3]

A
A

�
�

f [x3, x4]

f [x3] f [x4]

A
A

�
�

f [x3, x4]

f [x3] f [x4]

A
A

�
�

f [x4, x5]

f [x4] f [x5]

A
A

�
�

f [x1, x2, x3]

@
@

�
�

f [x2, x3, x4]

@
@

�
�

f [x2, x3, x4]

@
@

�
�

f [x3, x4, x5]

@
@

�
�

f [x1, x2, x3, x4]

Q
Q

Q
Q

�
�

�
�

f [x2, x3, x4, x5]

Q
Q

Q
Q

�
�

�
�

f [x1, x2, x3, x4, x5]

HHHHHHHHH

���������

Figure 2.4 Divided differences

f [x1]

f [x2]

f [x3]

f [x4]

f [x5]

@
@@

@
@@

@
@@

@
@@

f [x1, x2]

f [x2, x3]

f [x3, x4]

f [x4, x5]

@
@@

@
@@

@
@@

f [x1, x2, x3]

f [x2, x3, x4]

f [x3, x4, x5]

@
@@

@
@@

f [x1, x2, x3, x4]

f [x2, x3, x4, x5]

@
@@ f [x1, x2, x3, x4, x5]

Figure 2.5 Efficient computation of divided differences

The development of higher-order divided differences from lower order divided differences is illustrated in
Figure 2.4. Observe that the sought-after divided differences are along the left edge of the tree. Pruning the
excess, we see that the required divided differences can be built up as shown in Figure 2.5. This enables us
to rewrite InterpN as follows:

function c = InterpN2(x,y)

% c = InterpN2(x,y)

% The Newton polynomial interpolant.

% x is a column n-vector with distinct components and y is

% a column n-vector. c is a column n-vector with the property that if

% p(x) = c(1) + c(2)(x-x(1))+...+ c(n)(x-x(1))...(x-x(n-1))

% then

% p(x(i)) = y(i), i=1:n.

n = length(x);

for k = 1:n-1

y(k+1:n) = (y(k+1:n)-y(k:n-1)) ./ (x(k+1:n) - x(1:n-k));

end

c = y;

2.4. SPECIAL TOPICS 17

A number of simplifications result if the xi are equally spaced. Assume that

xi = x1 + (i− 1)h,

where h > 0 is the spacing. From (2.5) we see that

f [x1, . . . , xk] =
f [x2, . . . , xk]− f [x1, . . . , xk−1]

h(k − 1)
.

This makes divided difference a scaling of the differences ∆f [x1, . . . , xk], which we define by

∆f [x1, . . . , xk] =






f(x1) if k = 1

∆f [x2, . . . , xk]−∆f [x1, . . . , xk−1] if k > 1
.

For example,

0th 1st 2nd 3rd 4th
Order Order Order Order Order

f1

f2 f2 − f1

f3 f3 − f2 f3 − 2f2 + f1

f4 f4 − f3 f4 − 2f3 + f2 f4 − 3f3 + 3f2 − f1

f5 f5 − f4 f5 − 2f4 + f3 f5 − 3f4 + 3f3 − f2 f5 − 4f4 + 6f3 − 4f2 + f1

It is not hard to show that

f [x1, . . . , xk] =
∆f [x1, . . . , xk]

hk−1(k − 1)!
.

The built-in function diff can be used to compute differences. In particular, if y is an n-vector, then

d = diff(y)

and

d = y(2:n) - y(1:n-1)

are equivalent. A second argument can be used to compute higher-order differences. For example,

d = diff(y,2)

computes the second-order differences:

d = y(3:n) - 2*y(2:n-1) + y(1:n-2)

Problems

P2.4.1 Compare the computed ci produced by InterpN and InterpN2.

P2.4.2 Complete the following Matlab function:

function [c,x,y] = InterpNEqual(fname,L,R,n)

Make effective use of the diff function.

18 CHAPTER 2. POLYNOMIAL INTERPOLATION

2.4.2 Inverse Interpolation

Suppose the function f(x) has an inverse on [a, b]. This means that there is a function g so that g(f(x)) = x
for all x ∈ [a, b]. Thus g(x) =

√
x is the inverse of f(x) = x2 on [0, 1]. If

a = x1 < x2 < · · · < xn = b

and yi = f(xi), then the polynomial that interpolates the data (yi, xi), i = 1:n is an interpolate of f ’s
inverse. Thus the script

x = linspace(0,1,6)’;

y = x.*x;

a = InterpV(y,x);

yvals = linspace(y(1),y(6));

xvals = HornerV(a,yvals);

plot(yvals,xvals);

plots a quintic interpolant of the square root function. This is called inverse interpolation, and it has
an important application in zero finding. Suppose f(x) is continuous and either monotone increasing or
decreasing on [a, b]. If f(a)f(b) < 0, then f has a zero in [a, b]. If q(y) is an inverse interpolant, then q(0)
can be thought of as an approximation to this root.

Problems

P2.4.3 Suppose we have three data points (x1, y1), (x2, y2), and (x3, y3) with the property that x1 < x2 < x3 and that y1 and
y3 are opposite in sign. Write a function root = InverseQ(x,y) that returns the value of the inverse quadratic interpolant at
0.

2.4.3 Interpolation in Two Dimensions

Suppose (x̃, ỹ) is inside the rectangle

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.

Suppose f(x, y) is defined on R and that we have its values on the four corners

fac = f(a, c)

fbc = f(b, c)

fad = f(a, d)

fbd = f(b, d).

Our goal is to use linear interpolation to obtain an estimate of f(x̃, ỹ). Suppose λ ∈ [0, 1] with the property
that x̃ = (1− λ)a + λb. It follows that

fxc = (1 − λ)fac + λfbc

fxd = (1 − λ)fad + λfbd

are linearly interpolated estimates of f(x̃, c) and f(x̃, d), respectively. Consequently, if µ ∈ [0, 1] with
ỹ = (1− µ)c + µd, then a second interpolation between f1 and f2 gives an estimate of f(x̃, ỹ):

z = (1− µ)fxc + µfxd ≈ f(x̃, ỹ).

Putting it all together, we see that

z = (1− µ)((1− λ)fac + λfbc) + µ((1− λ)fad + λfbd)

≈ f((1 − λ)a + λb, (1− µ)c + µd).

Figure 2.6 depicts the interpolation points. To interpolate the values in a matrix of f(x, y) evaluations it
is necessary to “locate” the point at which the interpolation is required. The four relevant values from the
array must then be combined as described above:

2.4. SPECIAL TOPICS 19

r(a, c)

r(a, (1− µ)c + µd))

r(a, d)

r (b, c)

r (b, (1− µ)c + µd))

r (b, d)

u

((1 − λ)a + λb, c)

u
((1− λ)a + λb, d)

u

Figure 2.6 Linear interpolation in two dimensions

function z = LinInterp2D(xc,yc,a,b,c,d,fA)

% z = LinInterp2D(xc,yc,a,b,n,c,d,m,fA)

% Linear interpolation on a grid of f(x,y) evaluations.

% xc, yc, a, b, c, and d are scalars that satisfy a<=xc<=b and c<=yc<=d.

% fA is an n-by-m matrix with the property that

%

% A(i,j) = f(a+(i-1)(b-a)/(n-1),c+(j-1)(d-c)/(m-1)) , i=1:n, j=1:m

%

% z is a linearly interpolated value of f(xc,yc).

[n,m] = size(fA);

% xc = a+(i-1+dx)*hx 0<=dx<=1

hx = (b-a)/(n-1); i = max([1 ceil((xc-a)/hx)]); dx = (xc - (a+(i-1)*hx))/hx;

% yc = c+(j-1+dy)*hy 0<=dy<=1

hy = (d-c)/(m-1); j = max([1 ceil((yc-c)/hy)]); dy = (yc - (c+(j-1)*hy))/hy;

z = (1-dy)*((1-dx)*fA(i,j)+dx*fA(i+1,j)) + dy*((1-dx)*fA(i,j+1)+dx*fA(i+1,j+1));

The following can be used for the table-generation across a uniform grid:

function fA = SetUp(f,a,b,n,c,d,m)

% Sets up a matrix of f(x,y) evaluations.

% f is a handle to a function of the form f(x,y).

% a, b, c, and d are scalars that satisfy a<=b and c<=d.

% n and m are integers >=2.

% fA is an n-by-m matrix with the property that

%

% A(i,j) = f(a+(i-1)(b-a)/(n-1),c+(j-1)(d-c)/(m-1)) , i=1:n, j=1:m

x = linspace(a,b,n);

y = linspace(c,d,m);

fA = zeros(n,m);

for i=1:n

for j=1:m

fA(i,j) = f(x(i),y(j));

end

end

20 CHAPTER 2. POLYNOMIAL INTERPOLATION

Problems

P2.4.4 Analogous to LinInterp2D, write a function CubicInterp2D(xc,yc,a,b,n,c,d,m,fA) that does cubic interpolation from
a matrix of f(x, y) evaluations. Start by figuring out “where” (xc, yc) is in the grid with respect to x = linspace(a,b,n) and
y = linspace(c,d,m). Suppose this is the situation: as in LinearInterp2D.

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

(x
c
,y

c
)

For i = 1:4, construct a cubic pi(x) that interpolates f at (x1, yi), (x2, yi), (x3, yi) and (x4, yi). Then construct a cubic q(y)
that interpolates (xc, pi(xc)), i = 1:4 and return the value of q(yc). The above picture/plan assumes that (xc, yc) is not in an
“edge tile” so you’ll have to work out something reasonable to do if that is the case.

P2.4.5 (a) Use SetUp to produce a matrix of function evaluations for

f(x, y) =
1

.2(x − 3)2 + .3 ∗ (y − 1)2 + .2
.

Set (a, b, n, c, d, m) = (0,5,300,0,3,150). (b) Produce a plot that shows what f “looks like” along the line segment {(x, y) | x =
5 − 5t, y = 3t, 0 ≤ t ≤ 1}. Do this by interpolating f at a sufficiently large number of points along the line segment.

P2.4.6 This problem is about two-dimensional linear interpolation inside a triangle. Suppose that we know the value of a
function f(u, v) at the vertices of triangle ABC and that we wish to estimate its value at a point P inside the following triangle:

A B

C

P

Consider the following method for doing this:

• Compute the intersection Q of line AP and line BC.

• Use linear interpolation to estimate f at Q from its value at B and C.

• Use linear interpolation to estimate f at P from its value at A and its estimate at Q.

Complete the following function so that it implements this method. Vectorization is not important.

2.4. SPECIAL TOPICS 21

A B

C

Q

P

function fp = InterpTri(x,y,fvals,p)

% Suppose f(u,v) is a function of two variables defined everywhere in the plane.

% Assume that x, y, and fvals are column 3-vectors and p is a column 2-vector.

% Assume that (p(1),p(2)) is inside the triangle defined by (x(1),y(1)), (x(2),y(2)),

% and (x(3),y(3)) and that fvals(i) = f(x(i),y(i)) for i=1:3. fp is an estimate of

% f(p(1),p(2)) obtained by linear interpolation.

2.4.4 Trigonometric Interpolation

Suppose f(t) is a periodic function with period T , n = 2m, and that we want to interpolate the data
(t0, f0), . . . , (tn, fn) where fk = f(tk) and

tk = k
T

n
, k = 0:n.

Because the data is periodic it makes more sense to interpolate with a periodic function rather than with a
polynomial. So let us pursue an interpolant that is a linear combination of cosines and sines rather than an
interpolant that is a linear combination of 1, x, x2, etc.

Assuming that j is an integer, the functions cos(2πjt/T) and sin(2πjt/T) have the same period as f
prompting us to seek real scalars a0, . . . , am and b0, . . . , bm so that if

F (t) =

m∑

j=0

[
aj cos

(
2πj

T
t

)
+ bj sin

(
2πj

T
t

)]
,

then F (tk) = fk for k = 0:n. This is a linear system that consists of n + 1 equations in 2(m + 1) = n + 2
unknowns. However, we note that b0 and bm are not involved in any equation since sin(2πjt/T) = 0 if
t = t0 = 0 or t = tn = T . Moreover, the k = 0 equation and the k = n equation are identical because of
periodicity. Thus, we really want to determine a0, . . . , am and b1, . . . , bm−1 so that if

F (t) = a0 +

m−1∑

j=1

[
aj cos

(
2πj

T
t

)
+ bj sin

(
2πj

T
t

)]
+ am cos

(
2πm

T
t

)
,

then F (tk) = f(tk) = fk for k = 0:n− 1. This is an n-by-n linear system in n unknowns:

fk = a0 +

m−1∑

j=1

(aj cos(kjπ/m) + bj sin(kjπ/m)) + (−1)kam k = 0:n− 1.

22 CHAPTER 2. POLYNOMIAL INTERPOLATION

Here is what the system looks like for the case n = 6 with angles specified in degrees:





f0

f1

f2

f3

f4

f5





=





cos(0) cos(0) cos(0) cos(0) sin(0) sin(0)

cos(0) cos(60) cos(120) cos(180) sin(60) sin(120)

cos(0) cos(120) cos(240) cos(360) sin(120) sin(240)

cos(0) cos(180) cos(360) cos(540) sin(180) sin(360)

cos(0) cos(240) cos(480) cos(720) sin(240) sin(480)

cos(0) cos(300) cos(600) cos(900) sin(300) sin(600)









a0

a1

a2

a3

b1

b2





=





1 1 1 1 0 0

1 1/2 −1/2 −1
√

3/2
√

3/2

1 −1/2 −1/2 1
√

3/2 −
√

3/2
1 −1 1 −1 0 0

1 −1/2 −1/2 1 −
√

3/2
√

3/2

1 1/2 −1/2 −1 −
√

3/2 −
√

3/2









a0

a1

a2

a3

b1

b2





.

For general even n, CSInterp sets up the defining linear system and solves for a and b:

function F = CSInterp(f)

% F = CSInterp(f)

% f is a column n vector and n = 2m.

% F.a is a column m+1 vector and F.b is a column m-1 vector so that if

% tau = (pi/m)*(0:n-1)’, then

% f = F.a(1)*cos(0*tau) +...+ F.a(m+1)*cos(m*tau) +

% F.b(1)*sin(tau) +...+ F.b(m-1)*sin((m-1)*tau)

n = length(f); m = n/2;

tau = (pi/m)*(0:n-1)’;

P = [];

for j=0:m, P = [P cos(j*tau)]; end

for j=1:m-1, P = [P sin(j*tau)]; end

y = P\f;

F = struct(’a’,y(1:m+1),’b’,y(m+2:n));

Note that the a and b vectors are returned in a structure. The matrix of coefficients can be shown to be
nonsingular so the interpolation process that we have presented is well-defined. However, it involves O(n3)
flops because of the linear system solve. In P2.4.7 we show how to reduce this to O(n2). The evaluation of
the trigonmetric interpolant can be handled by

function Fvals = CSeval(F,T,tvals)

% F.a is a length m+1 column vector, F.b is a length m-1 column vector,

% T is a positive scalar, and tvals is a column vector.

% If

% F(t) = F.a(1) + F.a(2)*cos((2*pi/T)*t) +...+ F.a(m+1)*cos((2*m*pi/T)*t) +

% F.b(1)*sin((2*pi/T)*t) +...+ F.b(m-1)*sin((2*m*pi/T)*t)

%

% then Fvals = F(tvals).

Fvals = zeros(length(tvals),1);

tau = (2*pi/T)*tvals;

for j=0:length(F.a)-1, Fvals = Fvals + F.a(j+1)*cos(j*tau); end

for j=1:length(F.b), Fvals = Fvals + F.b(j)*sin(j*tau); end

2.4. SPECIAL TOPICS 23

We close this section by applying CSinterp and CSeval to a data fitting problem that confronted Gauss
in connection with the asteroid Pallas. The problem is to interpolate the following ascension-declination
data

α 0 30 60 90 120 150 180 210 240 270 300 330

d 408 89 -66 10 338 807 1238 1511 1583 1462 1183 804

with a function of the form

d(α) = a0 +

5∑

j=1

[aj cos(2πjα/360) + bj sin(2πjα/360)] + a6 cos(12πα/360).

Here is a script that does this and plots the results shown in Figure 2.7:

% Script File: Pallas

% Plots the trigonometric interpolant of the Gauss Pallas data.

A = linspace(0,360,13)’;

D = [408 89 -66 10 338 807 1238 1511 1583 1462 1183 804 408]’;

Avals = linspace(0,360,200)’;

F = CSInterp(D(1:12));

Fvals = CSeval(F,360,Avals);

plot(Avals,Fvals,A,D,’o’)

axis([-10 370 -200 1700])

set(gca,’xTick’,linspace(0,360,13))

xlabel(’Ascension (Degrees)’)

ylabel(’Declination (minutes)’)

0 30 60 90 120 150 180 210 240 270 300 330 360
−200

0

200

400

600

800

1000

1200

1400

1600

Ascension (Degrees)

D
e

c
lin

a
ti
o

n
 (

m
in

u
te

s
)

Figure 2.7 Fitting the Pallas data

Problems

P2.4.7 Observe that the matrix of coefficients P in CSinterp has the property that PT P is diagonal. Use this fact to reduce
the flop count in that function from O(n3) to O(n2). (With the fast Fourier transform it is possible to actually the flop count
to an amazing O(n log n).)

24 CHAPTER 2. POLYNOMIAL INTERPOLATION

M-Files and References

Script Files

ShowV Illustrates InterpV and HornerV

ShowN Illustrates InterpN and HornerN

ShowRungePhenom Examines accuracy of interpolating polynomial.
TableLookUp2D Illustrates SetUp and LinInterp2D.

Pallas Fits periodic data with CSInterp and CSEval.

Function Files

InterpV Construction of Vandermonde interpolating polynomial.
HornerV Evaluates the Vandermonde interpolating polynomial.
InterpNRecur Recursive construction of the Newton interpolating polynomial.
InterpN Nonrecursive construction of the Newton interpolating polynomial.
InterpN2 Another nonrecursive construction of the Newton interpolating polynomial.
HornerN Evaluates the Newton interpolating polynomial.
SetUp Sets up matrix of f(x,y) evaluation.
LinInterp2D 2-Dimensional Linear Interpolation.
Humps2D A sample function of two variables.
CSInterp Fits periodic data with sines and cosines.
CSEval Evaluates sums of sines and cosines.
ShowMatPolyTools Illustrates polyfit and polyval.

References

W.L. Briggs and V.E. Henson (1995). The DFT: An Owner’s Manual for the Discrete Fourier Transform,
SIAM Publications, Philadelphia, PA.

S.D. Conte and C. de Boor (1980). Elementary Numerical Analysis: An Algorithmic Approach, Third
Edition, McGraw-Hill, New York.

P. Davis (1963). Interpolation and Approximation, Blaisdell, New York.

