CS 421: Numerical Analysis Fall 2004

Problem Set 5

Handed out: Wed., Nov. 10.

Due: Fri., Nov. 19 in lecture.

1. The Krylov space $K_k(A, \mathbf{b})$ for an $n \times n$ matrix A and n-vector **b** is defined to be

$$K_k(A, \mathbf{b}) = \operatorname{Span}(\mathbf{b}, A\mathbf{b}, A^2\mathbf{b}, \dots, A^{k-1}\mathbf{b}).$$

- (a) Argue by induction that $\mathbf{x}^{(k)}$ computed by conjugate gradient lies in $K_k(A, \mathbf{b})$. (Assume the starting guess is $\mathbf{x}^{(0)} = \mathbf{0}$.)
- (b) Show that the solution \mathbf{x} to the linear system $A\mathbf{x} = \mathbf{b}$ lies in $K_n(A, \mathbf{b})$. Assume A is symmetric and positive definite. [Hint: Clearly the n+1 vectors $\mathbf{b}, A\mathbf{b}, \ldots, A^n\mathbf{b}$ must be linearly dependent since they lie in \mathbf{R}^n . Write out an equation of linear dependence, and pay attention to the index i such that the coefficient of $A^i\mathbf{b}$ is nonzero, and such i is minimal with this property.]
- 2. Consider finding an real eigenpair of a matrix $A \in \mathbf{R}^{n \times n}$. This can be accomplished by solving the system of n+1 nonlinear equations $A\mathbf{x} = \lambda \mathbf{x}$, $\mathbf{x}^T \mathbf{x} = 1$ for the n+1 variables (\mathbf{x}, λ) .
 - (a) Write out Newton's method for these nonlinear equations.
 - (b) Show how a preliminary Hessenberg factorization of A can reduce the number of flops need per Newton iteration.
- 3. It has been proposed in the literature to use Newton's method to compute the inverse of a matrix. Let A be an $n \times n$ nonsingular matrix. Consider the nonlinear equations $f(X) = A X^{-1}$. Then if $f(X^*) = 0$, clearly $X = A^{-1}$. It can be shown that the Newton iteration for solving f(X) = 0 is $X^{(k+1)} = 2X^{(k)} X^{(k)}AX^{(k)}$.
 - (a) Show by a direct argument that this iteration converges quadratically provided that all the eigenvalues of $AX^{(0)} I$ are less than 1 in absolute value. [Hint: Let $Y^{(k)} = AX^{(k)} I$. Find a formula for $Y^{(k+1)}$ in terms of $Y^{(k)}$.]
 - (b) Show that there exists an $\alpha > 0$ such using αA^T for $X^{(0)}$ satisfies the condition in (a) (i.e., for this particular $X^{(0)}$, all eigenvalues of $AX^{(0)} I$ are less than 1 in absolute value). Note that solving part (b) of this question does not require knowing how to solve part (a).
- 4. Implement the method for matrix inversion described in the previous question. Take $\alpha = 1/\|A\|_F^2$ for the starting point described by (b). Let

$$\rho_k = ||AX^{(k)} - I||_F / (||A||_F \cdot ||X^{(k)}||_F).$$

Note: $||A||_F$ in Matlab is norm(A, 'fro'). Use as a termination test $\rho_k \leq \epsilon_{\text{mach}}$. Use also as a second termination test $\rho_k \geq 0.99\rho_{k-1}$ (to detect stagnation of the iteration).

Determine how many iterations are required for convergence, as a function of the condition number of A. Use a very wide range of condition numbers. Note: Produce matrices with a given value of condition number by forming a diagonal matrix with known condition number, and then multiply on the left and right by a random orthogonal matrix. A random orthogonal matrix can be generated by applying qr(C) to a random matrix C. Use semilogx for plotting so that the condition number axis uses a log-scale.

Plot also the final residual ρ_k (i.e., the residual at the step that the termination test is satisfied) as a function of condition number. Use loglog plots for this purpose.

Finally, plot the same residual for the same set of matrices, except use the inverse as computed by the built-in inv(A).

Hand in listings of your m-files and the requested plots plus a paragraph of conclusions.