
Review for Midterm
Starring Ari and Tyler

Basic OS structure

• OS has two chief goals: arbitrating access to
resources, and exposing functionality.

• Often go together: we arbitrate hardware by
wrapping in higher-level interface that naturally
incorporates protection.

• Examples of arbitration and protection?

Moving bits in and out

• Can either do I/O via memory mapping or special
instructions. (feature of hardware, not OS)

• Some mix of interrupts and DMA for data path.

• Traps to indicate software conditions/ system calls.

Processes vs Threads

• What do they have in common?

• How are they different?

Scheduling

• OS has to pick which process/thread gets CPU
time, and for how long.

• Lots of scheduling algorithms: most real-world
ones are some flavor of round-robin.

• Do some sort of feedback to size CPU bursts to
process behavior: want interactive processes to get
scheduled more often.

Semaphores

• You’ve all built them.

Monitors

• More modern and high-level than semaphores.

• Defines (lexically or dynamically) a region of code
in which only one thread is running.

• Lexically: Java’s synchronized(foo) {}

• Dynamically: Monitor_enter, Monitor_leave.
(Pthreads, windows, etc)

Condition variables

• Monitors alone not enough.

• Condition variables let a thread atomically release
monitor lock and stop.

• Can be woken without breaking monitor
guarantee. (Though ambiguous who runs next)

• Hoare vs Mesa semantics

Deadlock

• Conditions:

• ?

Deadlock

• Conditions:

• Mutual exclusion: resources aren’t shared.

• Hold+Wait: process holding resource can
request more

• No preemption: resources not taken from
process.

• Circular Dependence

Dealing with deadlock

• Many strategies -- either proactive or reactive

• ?

Dealing with deadlock

• Many strategies -- either proactive or reactive

• Impose total ordering on resources.

• Have “resource acquisition” operation check
for cycles. (Hard, if resources can’t be neatly
enumerated)

• Banker’s algorithm? (Hard in practice, since
don’t know maximum need)

Virtual Memory

• Originally, swapping to share scarce RAM; one
process at a time loaded into memory.

• Paging allows more fine-grained allocation.

• These days, VM primarily for process isolation.

• Idea is that processes cannot utter name of
someone else’s storage, so no possibility of
corruption.

Paging

• Paging requires separating “virtual” and “physical”
addresses; this way same physical address can be
used by different processes and system will catch
accesses.

• Mapping from virtual to physical address stored in
page tables.

• Some hardware support needed: have to catch
accesses, and to make this go acceptably fast, need
hardware caches (TLB)

Address translation

• Can’t have map for every address -- too expensive.

• Map by pages instead.

• Suppose we have a virtual address 0xAABB1234.

• Suppose 4k pages. Then last three nybbles are
page offset, rest is page tag.

• So we lookup 0xAABB1, fetch the page, and then
add back the 234.

Worked example

• Let’s do it for two-level paging and 40-bit
addresses; 4kb pages, tag sizes of 16 and 12 bits.

• Suppose address is 0xAABB123456.

• Then offset on page is...

Worked example

• Let’s do it for two-level paging and 40-bit
addresses; 4kb pages, tag sizes of 16 and 12 bits.

• Suppose address is 0xAABB123456.

• Then offset on page is 0x456.

• Index into first table is...

Worked example

• Let’s do it for two-level paging and 40-bit
addresses; 4kb pages, tag sizes of 16 and 12 bits.

• Suppose address is 0xAABB123456.

• Then offset on page is 0x456.

• Index into first table is... 0xAABB.

• And index into second table is....

Worked example

• Let’s do it for two-level paging and 40-bit
addresses; 4kb pages, tag sizes of 16 and 12 bits.

• Suppose address is 0xAABB123456.

• Then offset on page is 0x456.

• Index into first table is... 0xAABB.

• And index into second table is 0x123.

Doing the translation

• Same example of 0xAABB123456.

• First index into outer table to map 0xAABB.

• Write that down as YYYY.

• Next lookup page table YYYY. Map 0x123 to
ZZZ.

• Final address is 0xYYYYZZZ123456.

Page tables

• Many different page table layouts.

• Either direct, or inverted.

• Inverted relies on hashing to find match.

• Can afford overhead; “almost all” lookups hit TLB
instead.

• Cost on context switch; have to refresh TLB

Page ejection

• If doing VM to share RAM, will sometimes need
to eject pages from RAM to make way for others.

• Can get thrashing if pages ejected too often.
(Throughput falls drastically)

• Try to do clever algorithms to do as few read-ins
as possible.

Caching....

• Physical RAM now looks like a cache for total
memory.

• Significant theory behind caching....

• Can’t do perfectly; ideal is to eject page that won’t
be used again for longest time.

• Use LRU or WS as approx.

Working set

• Idea behind WS: track pages used in last t
seconds, or last k faults.

• Keep those working sets if possible; else suspend
and swap out a process.

• Hard to really implement.

• Tracking page access is expensive.

• Real systems try to approximate LRU and WS.

