CHA14 Assignment 2

10 points per answer for 1la-d, then 60 pointsfor question 2 (100 max). Due

Wednesday February 8

Short-answer questions (just a sentence or two each, please).

1. Suppose that you are writing an operating system for a standard PC and warted to
build in some logic for determining whether or not the OS was actually running in
avirtual machine monitor as opposed to running on the “raw” hardware. Here are
some ideas for how you could do that. Indicate for each one whether or not it
would work, and give a short reason. (If the idea includes a completely wrong
assertion, explain what is wrong about it).

a. The O/S could include some sort of compute-intensive program By

C.

d.

testing on the same platform, the O/S should have a pretty good idea of
how long this takes to run on araw CPU and can compare with the timing
it actually sees. If the O/Sis running in a virtual machine, this will dow
things down so much so that it will be obvious.

Sameideaasin (1) but with afocus on the speed at which system calls are
executed — e.g. the O/S would measure some simple system call, like
“gettimeofday()”, doing perhaps ten million of them, and look for
evidence that a VMM might be intercepting the traps and then reissuing
them.

The OIS can just write something to the disk and read it back in. If the
disk is avirtualized, these operations will fail.

InaVMM, the O/S won't get interrupts, so it will be obvious.

2. Suppose that the operating system has a disk driver coded in C that maintains a
list of pending I/O operations. Nodes ook like this:

struct disk_io_req{
struct disk_io_req *next; /* pointer to the next one, or null */
struct disk_io_req *last; /* pointer to the last one, or null */

int disk_io_op; /* 0 for READ, 1 for WRITE */
void *buffer_addr; [* Start address for transfer */
int buffer_len; [* Length in bytes*/

} *disk_io_list;

Asyou can see, the disk_io_list pointer is either NULL (no work to do), or points
to acircular list with each io request object linked to the next one in the list and to
the previous onein the list. If thereisjust asingle node, it points to itself. Here's
the code used to add a new request to the list and to remove ore; these are called
within the operating system as the need arises:

void add_disk_io_req(struct disk_io_req *dr)
{

if(disk_io_list ==NULL) /* If the list was empty... */
disk io list = dr->next = dr->last = dr;
else/* ... if not, put the new node at the very end of the list */

{
dr->next = disk_io_list;
dr->last = disk_io_list->ladt;
disk_io list->last->next = dr;
disk_io list->last = dr;
}
}
struct disk_io_req *get_disk_io_req()
{
struct disk_io_req *dr = disk_io_list;
if(dr == NULL) return(dr); /* empty */
if(dr->next ==dr) /* list hasjust asingleitem onit */
{
disk_io_list=NULL,;
return(dr);
}
[* general case: remove the first item and return it */
disk_io_list = dr->next;
dr->next->last = dr->last;
dr->last->next = dr->next;
return(dr);
}

Notice that the operating system calls add_disk io req() and get_disk_io_req()
from time to time. Would it be safe to also call get disk io reg() from an
interrupt handler? We're thinking about a situation where the disk has a list of
things to do, and one of them finishes, and we want to start doing the next. If so,
explain why. If not, explain what might go wrong. In your answer assume that
no changes are made to this code: what you see above is precisely what would get
executed.

