CS 415 Operating Systems Practicum

Ad-Hoc Routing and Applications
Oliver Kennedy
okennedy@cs.cornell.edu

Project 4 Comments

- o Project 4 due date pushed back to the 19th.
- o Project 4 Questions:
 - o minisocket_send() behavior:
 - Block until the entire message is sent and acknowledged.
 - o minisocket_receive() behavior:
 - o Do not block; If there are not enough bytes in the queue to fill the buffer, return.
 - This means you need to implement a nonblocking read, or a will_recv_block() function.
 - Code for ACKs should NOT be located in minisocket_receive().

Project 5

- o We've implemented unreliable networking.
 - o We've implemented reliable networking on top of it.
 - o But we want to scale up.
- o Messages can only be sent to the local network.
 - o Different entities have their own networks.
 - o Can we join two networks together?
 - What if computers on different networks need to talk to each other?
 - A computer needs to know which route to take to another computer.

Routing

- o IP: Each entity runs a router that discusses routes with other routers
 - o Expensive infrastructure
 - o Cant move between networks easilly
- 802.11: Each base station keeps track of which computers are connected and communicates with all the other routers.
 - o Still a lot of expensive infrastructure
- o IM Clients: Central agent knows routes to all computers, and all computers know a route to the central agent.
 - Same problems as before

Ad-Hoc routing

- Each computer is in communications range of N other computers.
- If a computer has a message for a computer not in range, it asks around for a path to the target.
- o Flood the network looking for our target (like Gnutella)
 - Doesn't scale well, but works well for small networks.
- We emulate a set of wireless nodes talking to each other in ad-hoc mode.

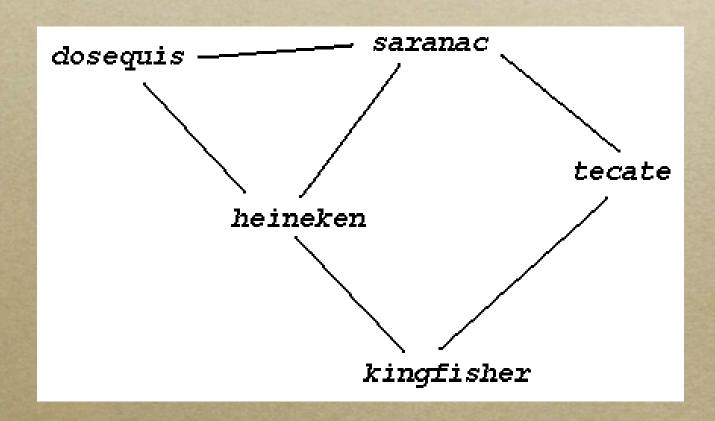
Setup

- o In network.h
 - o #define BCAST_ENABLED 1
 - o #define BCAST_USE_TOPOLOGY_FILE 1
- o Create a topology file

Topology File

The testility was to minute imperiations in the contest of the con

saranac heineken dosequis kingfisher tecate


.XX.X

x.xx.

xx...

.X..X

x . . x .

Implementation

- o miniroute_send_pkt() (in miniroute.c)
 - Same interface as network_send_pkt()
 - o Do we have a route to the target cached?
 - Yes: Send the packet to the next computer in the path
 - o No: Find a route
- o Finding a route
 - Use network_bcast_packet() to send a request to the network
 - o Wait 15s for a response before timing out
 - o Make 3 attempts before failing

The Route Cache

- o Keep a data structure containing all known routes.
 - o Linked List.
 - o Fixed Size Array (with LRU replacement).
- o When a route is discovered, add it to the cache.
 - o Set an alarm to discard the route after 3 seconds.
- o miniroute_send_pkt() should check the cache first.
- o The routing protocol should ignore the cache.
 - o This avoids cyclical and stale paths.

Changing your existing code

- o Network Interrupt Handler
 - Should now forward route requests, responses and routing packets.
- Route Requests
 - o If I'm the destination, send a response.
 - Have I seen this request before (sequence/host pair)?If so, ignore it
 - o If I'm not the destination, decrement TTL and rebroadcast to all peers.

Changing your existing code

- o Route Responses
 - o Am I the destination?
 - o If so, add the route to the cache and wake up the sender thread.
 - o Else forward to next peer in route.
- Packet Routing
 - o Am I the destination?
 - o If so, pass to UDP handler.
 - o Else forward to next peer in route.
- Replace all calls to network_send_pkt() with miniroute_send_pkt().

The Spec

- o The new layer MUST use the headers defined in miniroute.h
 - This way, you can route messages for other computers, even if those computers are using a different implementation of UDP.
- o MAX_ROUTE_LENGTH must be 20.
- ROUTING_ROUTE_DISCOVERY
 - Each host should decrement ttl by 1 and put themselves in route entry M_R_L ttl before forwarding.
- ROUTING_ROUTE_REPLY
 - The sender of the reply should just invert the first M_R_L- ttl entries of the discovery packet.
 - The recipient should do the same for the reply.

Overview

- o Expanded Network Interrupt Handler
- o New Send Packet
 - o Change all code to use new send packet.
- o Route Cache
 - o ... with timeouts.
- o And a test case...

Testing

- o Write an instant messenger
 - o Use reliable or unreliable connections.
 - Instead of using <stdio> primitives, use miniterm_read() defined in read.h
 - You'll need to call miniterm_initialize() in read_private.h
 - You should be able to communicate with any other computer running your software, even if direct communication is not possible.

fin