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So far...
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o You can send messages from one computer
to another.

o But those messages can get lost.
o Can we do better?

o We’ll build a simplified TCP.

o Add sequence numbers and acks.



Overview
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o There are multiple approaches.
o Extend miniports to support error cases.

o Have messages sent to one miniport and
processed by a background thread.

o Make one miniport a control socket.

o Your interface consists of five functions
defined 1in minisocket.c/.h



The functions
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o minisocket_server_create()
o Waits for a connection to start
o minisocket_client_create()
o Starts a connection with a listener
o minisocket_send()/minisocket_receive()
o Send/receive data
o minisocket_close()

o Finish a connection



Sendmg Packets
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o How do you detect transmission errors’?
o Acknowledge each packet
o Assign each packet a sequence number
o If a packet 1s dropped, you should re-send it.
o If a packet drops enough times, throw an error.

o Use timers + semaphores for timeouts.



Sendmg Packets (cont)
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o Attempt to send 7 times.

o Start the timeout at 100 ms.

o Double the timeout after each attempt.

(resetting after a success)

o Send should block until the packet 1s
acknowledged.

o If a packet is too big, break it up.




Creating a Socket
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o minisocket_server_create()
o Block until a create message arrives.
o Send a create acknowledgement...

o ... and as with any data packet, wait
for an ack.



Creating a Socket
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o minisocket client_create()
o Send a create command...
o ... while waiting for a create ack

o Acknowledge the acknowledgment.



Buffermg Data
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o AS data 1s received, it should be saved
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o When you read, you should save any
unread data 1n a packet.

o Use a ring buffer.

o Use a queue, “‘shortening” the packet at
the head of the queue.

o Use the miniport queue and a temporary
buffer.



Port for each Socket
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o If you use this approach, you will need to
extend miniports to handle error cases.

o Packet receipt on an inactive port.

o Per-packet preprocessor to acknowledge
packet receipt.



De-multiplexing
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o Yet another background thread.
o Call miniport_receive() repeatedly.
o Figure out what kind of message it 1s.
o Figure out what minisocket 1t’s going to.
o Make sure the packet 1sn’t a duplicate.

o Deal with it (or send back an error).



Things to keep in mind
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o Don’t forget to destroy the remote port returned by receive()
(unless you need it).

o Make sure deregister_alarm() 1s working.

o ALL your minisockets code must be threadsafe. All of it
should be doable with semaphores/locks.

© You may want to create a minisocket_initialize().

o There are other ways of doing this project.






