CS 415
Operating Systems Pract1cum

PR R S L Tt gt PG DA f A Pty S BTt i Lo lae l, PISGESN e e

Project 4: Reliable Networking
Due: April 19, 23:59

Oliver Kennedy

okennedy@cs



So far...

R R S Tt G Prbver o A A Pty S AT S S S va sV bt A e i e B R i TR

o You can send messages from one computer
to another.

o But those messages can get lost.
o Can we do better?

o We’ll build a simplified TCP.

o Add sequence numbers and acks.



Overview

. o ; 14_.5 PR & Y, e #'hhﬂ::ﬂ.ﬂﬂhp.-..._-ui-l-_, b Pt o el T : WW' . " Rl

o There are multiple approaches.
o Extend miniports to support error cases.

o Have messages sent to one miniport and
processed by a background thread.

o Make one miniport a control socket.

o Your interface consists of five functions
defined 1in minisocket.c/.h



The functions

TR S Tt S v LA A Py = B BTSSR s N ik SR I e e e i T A
o minisocket_server_create()
o Waits for a connection to start
o minisocket_client_create()
o Starts a connection with a listener
o minisocket_send()/minisocket_receive()
o Send/receive data
o minisocket_close()

o Finish a connection



Sendmg Packets

NN b St Tt e P AR A A ety S O ST v e lintha b PRSI s e R e

o How do you detect transmission errors’?
o Acknowledge each packet
o Assign each packet a sequence number
o If a packet 1s dropped, you should re-send it.
o If a packet drops enough times, throw an error.

o Use timers + semaphores for timeouts.



Sendmg Packets (cont)

" o e TR g ks i o+ el
vad e a2 0

AR Sk Tt g

o Attempt to send 7 times.

o Start the timeout at 100 ms.

o Double the timeout after each attempt.

(resetting after a success)

o Send should block until the packet 1s
acknowledged.

o If a packet is too big, break it up.




Creating a Socket

AR T SR b, S Tt g S P DR A Tt S 30 AT ST B eV b R NN e e g e i T

o minisocket_server_create()
o Block until a create message arrives.
o Send a create acknowledgement...

o ... and as with any data packet, wait
for an ack.



Creating a Socket

PN e St Tt SR P STt A Pty S B AT s ML bt e e gy e i s Tl

o minisocket client_create()
o Send a create command...
o ... while waiting for a create ack

o Acknowledge the acknowledgment.



Buffermg Data

F A Py e o aan g M g g » el oy B ?"H'“F"". i '_I:E w

o AS data 1s received, it should be saved

TSR S Tt g Sl

o When you read, you should save any
unread data 1n a packet.

o Use a ring buffer.

o Use a queue, “‘shortening” the packet at
the head of the queue.

o Use the miniport queue and a temporary
buffer.



Port for each Socket

A T : - Y TR L T PR e =
ML LR i Ay 0t T P LA A s PRI et bk (. PRRRGTS VN

o If you use this approach, you will need to
extend miniports to handle error cases.

o Packet receipt on an inactive port.

o Per-packet preprocessor to acknowledge
packet receipt.



De-multiplexing

. po e 4_ P = Py T ,..:.-'hﬁ--u:-r:.‘ﬂ.ﬂﬂhp.-..._-u'b-:.., b Pt o el T . : i Tl

o Yet another background thread.
o Call miniport_receive() repeatedly.
o Figure out what kind of message it 1s.
o Figure out what minisocket 1t’s going to.
o Make sure the packet 1sn’t a duplicate.

o Deal with it (or send back an error).



Things to keep in mind

RN S, Tt G R Prmvm i A A Pty S e AR v e SN s PR

o Don’t forget to destroy the remote port returned by receive()
(unless you need it).

o Make sure deregister_alarm() 1s working.

o ALL your minisockets code must be threadsafe. All of it
should be doable with semaphores/locks.

© You may want to create a minisocket_initialize().

o There are other ways of doing this project.






