
CS 415
Operating Systems Practicum

Project 4: Reliable Networking
Due: April 19, 23:59

Oliver Kennedy
okennedy@cs

So far...

You can send messages from one computer
to another.

But those messages can get lost.
Can we do better?

We’ll build a simplified TCP.
Add sequence numbers and acks.

Overview

There are multiple approaches.
Extend miniports to support error cases.
Have messages sent to one miniport and
processed by a background thread.
Make one miniport a control socket.

Your interface consists of five functions
defined in minisocket.c/.h

The functions

minisocket_server_create()

Waits for a connection to start

minisocket_client_create()

Starts a connection with a listener

minisocket_send()/minisocket_receive()

Send/receive data

minisocket_close()

Finish a connection

Sending Packets

How do you detect transmission errors?
Acknowledge each packet
Assign each packet a sequence number

If a packet is dropped, you should re-send it.
If a packet drops enough times, throw an error.
Use timers + semaphores for timeouts.

Sending Packets (cont)

Attempt to send 7 times.
Start the timeout at 100 ms.
Double the timeout after each attempt.
(resetting after a success)

Send should block until the packet is
acknowledged.
If a packet is too big, break it up.

Creating a Socket

minisocket_server_create()
Block until a create message arrives.
Send a create acknowledgement...

... and as with any data packet, wait
for an ack.

Creating a Socket

minisocket_client_create()
Send a create command...

... while waiting for a create ack
Acknowledge the acknowledgment.

Buffering Data

As data is received, it should be saved.
When you read, you should save any
unread data in a packet.

Use a ring buffer.
Use a queue, “shortening” the packet at
the head of the queue.
Use the miniport queue and a temporary
buffer.

Port for each Socket

If you use this approach, you will need to
extend miniports to handle error cases.

Packet receipt on an inactive port.
Per-packet preprocessor to acknowledge
packet receipt.

De-multiplexing

Yet another background thread.
Call miniport_receive() repeatedly.
Figure out what kind of message it is.
Figure out what minisocket it’s going to.
Make sure the packet isn’t a duplicate.
Deal with it (or send back an error).

Things to keep in mind

Don’t forget to destroy the remote port returned by receive()
(unless you need it).

Make sure deregister_alarm() is working.

ALL your minisockets code must be threadsafe. All of it
should be doable with semaphores/locks.

You may want to create a minisocket_initialize().

There are other ways of doing this project.

Good Luck

