
CS 415: Operating Systems 
Practicum

Project 3- Implementing UDP
Oliver Kennedy

okennedy@cs.cornell.edu



Updates to project 2

New threads should come in at high priority
The project 2 section notes say to use time().

For project 3, replace calls to time() with 
accesses to the global variable ticks

You will need to add the following line 
to clock_handler: ticks += PERIOD;



Goals

We have a threading package
What are threads used for?

Complex calculations (sieve)
Servers!

Let’s do some networking.



What do you get to work with?

You get a means of...
identifying a host (network_address_t).
sending data to a particular host.

network_send_pkt()
being alerted when new data arrives.

network_initialize(handler);
All defined in network.h



Why isn’t this good enough?

We’re multiplexing the processor, we also need 
to multiplex the network card.
The network card sends and receives messages.

Create multiple virtual network cards.
Call them “ports”.
A port can send messages to another port.

... on the same machine or another



What goes into a port?

Two types of Ports: Local and Remote
Local and Remote should store

Port #
Host Address

Local should also store
Message queue



The Basics
minimsg_initialize()
miniport_local_create()

allocates a local port and prepares it for 
receive operations.

miniport_remote_create()
allocates a remote port and prepares it 
for send operations

miniport_destroy()



Anatomy of a Packet

Header
Who sent it (address, port)
Who is it meant for (port, address?)
Body Size

Body



Working with memory

sizeof() returns the number of bytes used 
by a datastructure
char *foo1 = malloc(4) is the same as

int *foo2 = malloc(sizeof(int))
((int*)foo1) can be used as if it were foo2



Working with memory

Basic types
char *buffer = [headerbytes][bodybytes]
header_t header; char *body;

Extracting data from buffer
Header: (header_t*)&(buffer[0])
Body: &(buffer[sizeof(header_t)])



minimsg_send()

Check for error cases (invalid params)
Create the header
For a remote port

network_send_pkt()
For a local port

Create a fake network_interrupt_arg_t
Enqueue it



minimsg_receive()
Check for error cases

Block until the local port has something in its queue

Semaphores!

Extract the header, body, and length

Create a new port representing the sender and save it 
in ‘remote’

Either a remote port or a “virtual port”

Application responsible for cleaning this up

free() the packet contents



Interrupt Handler

Interrupt handler should be fast!
Pull processing out into another thread

Create a global to-be processed queue.
Make a thread like the garbage collector

Peek at the header and get the port
Enqueue the packet on the port’s queue.

Need a datastructure to map ports to miniports.



Gotchas

Synchronization
Interrupt handler should not need to 
obtain locks.
Be careful which synchronization 
method you use.

Semaphores
V() should NOT block!



Other notes

Local ports all need an ID.
Use hard-coded ports provided by the 
app.

Test with network[1-6].c
3 test cases included for alarms/preemption
Message sizes/Body sizes are capped!



Good Luck


