CS 415
Operating Systems Pract1cum

PN b, M, Tt DS Prirs G LA F A Tty B B o v o PO L S

Project 2: Preemptive Threading
Oliver Kennedy
okennedy@cs.cornell.edu



Goals

e T T L e - PRI T e RO T =

o Activate the clock
o Add an alarm

o Add Sleep()

o Improve your scheduler



Part O: Settlng up

o e TR g ks i o+ el
F Pty s qﬂ'-nr-...-'ﬂ.n.al

PR Sk, Tt A

o Get the source from CMS

o You will need to merge your changes to
project 1 with project 2

o Replace queue.c, synch.c
o 3 new functions in minithreads.c

o All other source files should be from
project 2.



Part 1: Advanced Threadmg

RN Sl Tt G T Prvmelig i A A Pty S0 A it o S s S s s PR

o Your code should already be threadsafe
o Now we turn on the clock
o Change minithread_init()
o minithread_clock_start(&clock handler);

o set_interrupt_level(ENABLED);

o clock_handler != minithread_yield



Part 1: Advanced Threadlng

TSR S Tt g Sl

o Implement _stop() and unlock and stop()

o e TR g ks i o+ el
F Pty s %‘H,”“

o Update semaphore_p() and _v()

o stop() should switch to another thread
without putting the current thread back on
the run queue

o unlock_and_stop() should clear a lock and
atomically switch to another thread

o Implement this by disabling interrupts



Part 2: Alarms

AT S Pt S e b I aainr. VPR S prevy i G o Fros o

o Fill in the blanks: alarm.c

o register_alarm(delay, func, arg);
o in [delay] seconds, call [func]([arg])
O return a unique 1d;

o deregister_alarm(id);
o prevent alarm [1d] from triggering

o (1f 1t hasn’t already been triggered)



Part 2: Alarms

. o ; 14_.5 PR & Y, e #'hhﬂ::ﬂ.ﬂﬂhp.-..._-ui-l-_, b Pt o el T : WW' . " Rl

o How to store alarms
o Use a queue
o Use a custom datastructure
o Run alarms in clock handler
o use time(NULL)
o Don’t block.

o Run alarms 1n their own thread.



Part 2: Alarms

e T T L e - PRI T e RO T =

o Representing an alarm
o Trigger time (time(NULL) + delay)
o func + arg

© When to run an alarm?

o compare time(NULL) > trigger



Part 2: Alarms

. o ; 14_.5 PR & Y, e #'hhﬂ::ﬂ.ﬂﬂhp.-..._-ui-l-_, b Pt o el T : WW' . " Rl

o Queue

o queue_iterate() to find an alarm to run
(and then delete 1t)

o Custom Datastructure
o Implement a sorted queue.

o Insert alarms into the queue so that the
next alarm 1s always at the front of the
queue.



Part 3: Sleep()

PR SRR St L Tt GBS P G AR A Pty S0 LT R v e B TN 0 i s PR i i oY

o Fill in the blank: ..._sleep_with_timeout()
o Implement using alarms
o Register an alarm for minithread_ start()

o Call minithread_stop();



Part 4.1: Advanced Queues

AR Sk Tt g

o e TR g ks i o+ el
¥ APy e L PR

o Fill in the blanks: multilevel_queue.c

o A datastructure that stores an arbitrary number
of queues

o Remember, arrays are just chunks of memory.

o malloc(num * sizeof(int)) creates an array of
num integers

o Allocate an array of queues.



Part 4.2: Advanced Scheduhng

TSR S Tt g Sl

o Not so much fill in the blanks as tweak
minithread.c

o e TR g ks i o+ el
F Pty s %‘H,”“

© You had 1 run queue before, now you have 4.

o Run the thread at the front of the highest
priority queue.

o If the queue 1s empty, go to the next

o After 10 cycles of waiting at the head of a
queue, a thread graduates to the next priority.



Part 4.2: Advanced Scheduhng

RN Sl Tt G T Prvmelig i A A Pty S0 A it o S s S s s PR

o Priorities

o Each thread 1s assigned a priority when 1t
1s created (Start 1n the middle)

o When a thread yield()s (or hits a clock
interrupt), it should enter the queue for
the priority level below the one it was
running at. (or stay if it’s at the bottom)



Part 4.2: Advanced Scheduhng

e e e e T L e L PP

o Quanta

o clock_handler() should only call yield() every
X times 1t gets called.

o X 1s defined by the priority level.
o For the highest priority threads, X should be 1.

o X doubles at every step down the priority
ladder.






