
CS 415
Operating Systems Practicum

Project 2: Preemptive Threading
Oliver Kennedy

okennedy@cs.cornell.edu



Goals

Activate the clock
Add an alarm
Add Sleep()
Improve your scheduler



Part 0: Setting up

Get the source from CMS
You will need to merge your changes to 
project 1 with project 2

Replace queue.c, synch.c
3 new functions in minithreads.c
All other source files should be from 
project 2.



Part 1: Advanced Threading

Your code should already be threadsafe
Now we turn on the clock

Change minithread_init()
minithread_clock_start(&clock_handler);
set_interrupt_level(ENABLED);

clock_handler != minithread_yield



Part 1: Advanced Threading

Implement _stop() and _unlock_and_stop()
Update semaphore_p() and _v()

stop() should switch to another thread 
without putting the current thread back on 
the run queue
unlock_and_stop() should clear a lock and 
atomically switch to another thread

Implement this by disabling interrupts



Part 2: Alarms

Fill in the blanks: alarm.c
register_alarm(delay, func, arg);

in [delay] seconds, call [func]([arg])
return a unique id;

deregister_alarm(id);
prevent alarm [id] from triggering

(if it hasn’t already been triggered)



Part 2: Alarms

How to store alarms
Use a queue
Use a custom datastructure

Run alarms in clock_handler
use time(NULL)
Don’t block.

Run alarms in their own thread.



Part 2: Alarms

Representing an alarm
Trigger time (time(NULL) + delay)
func + arg

When to run an alarm?
compare time(NULL) > trigger



Part 2: Alarms

Queue
queue_iterate() to find an alarm to run 
(and then delete it)

Custom Datastructure
Implement a sorted queue.
Insert alarms into the queue so that the 
next alarm is always at the front of the 
queue.



Part 3: Sleep()

Fill in the blank: ..._sleep_with_timeout()
Implement using alarms

Register an alarm for minithread_start()
Call minithread_stop();



Part 4.1: Advanced Queues

Fill in the blanks: multilevel_queue.c
A datastructure that stores an arbitrary number 
of queues

Remember, arrays are just chunks of memory.
malloc(num * sizeof(int)) creates an array of 
num integers
Allocate an array of queues.



Part 4.2: Advanced Scheduling

Not so much fill in the blanks as tweak 
minithread.c
You had 1 run queue before, now you have 4.

Run the thread at the front of the highest 
priority queue.
If the queue is empty, go to the next

After 10 cycles of waiting at the head of a 
queue, a thread graduates to the next priority.



Part 4.2: Advanced Scheduling

Priorities
Each thread is assigned a priority when it 
is created (Start in the middle)
When a thread yield()s (or hits a clock 
interrupt), it should enter the queue for 
the priority level below the one it was 
running at. (or stay if it’s at the bottom)



Part 4.2: Advanced Scheduling

Quanta
clock_handler() should only call yield() every 
X times it gets called.

X is defined by the priority level.
For the highest priority threads, X should be 1.
X doubles at every step down the priority 
ladder.



Good Luck


