
CS 415
Operating Systems Practicum

Project 1: Simple Threads Management
Oliver Kennedy

okennedy@cs.cornell.edu

Oops...

Somehow I managed to schedule office
hours during class...

They’re now M/W 2:15 - 4:00

I will meet with each group twice.

You’ll demo your most recent project

Send me potential meeting times (M/W/F)

okennedy@cs.cornell.edu

Both group members need to be able to
discuss the content of their project

Student Meetings

Implement a queue

Implement a simple threading system

Implement semaphores

Demonstrate the above with a barber shop
program

Goals

The base code is available on CMS

cms2.csuglab.cornell.edu

Let me know if you can’t access CMS

See the project page for instructions

Visual Studio

msdnaa.cs.cornell.edu

Setup

Linked Lists

Ø

First

Ø

First

Ø

Last

Linked Lists

Ø

Linked Lists

Ø

Linked Lists

Need to handle edge cases specifically
Need to check if the new object is the
first or last object in the list
Update the first and last pointer

Synchronization
Note that Linked Lists as described are
NOT thread safe.

Part 1: A Queue

Objectives
Implement a queue with prepend
Should support Append/Prepend in O(1)

Linked Lists are ideal for this
The queue need not be threadsafe...

... but the rest of the project needs to
be aware of this.

Part 1: A Queue

Fill in the blanks: queue.c/queue.h
Define one or more structures in queue.c
The world sees a queue_t

Just an anonymous pointer
Use coercion to operate on queue_t

(struct myqueue *)q->last

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack
SPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

bazSP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

baz
2
3

SP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

baz
2
5

SP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

2
5

SPBP

baz

foo's regs

baz

Old BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP

baz

foo's regs

baz

Old BP

bar's regs

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
3

Return value goes in a
special register

(Or goes onto the stack)

baz

foo's regs

baz

Old BP

bar's regs

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
3

Return value goes in a
special register

(Or goes onto the stack)

5
baz

foo's regs

baz

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
8

Return value goes in a
special register

(Or goes onto the stack)

5
baz

foo's regs

baz

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack
BP

SP

8
Return value goes in a

special register
(Or goes onto the stack)

2
baz

5

Threads

Stack 1

Stack 2

Stack 3

Heap

Thread 1

Thread 2

Thread 3

Part 2: Thread Manipulation

Objectives
Implement structures to describe threads
Implement operators for those structures
Implement a scheduler

Fill in the blanks: minithreads.c/.h
Stack manipulation abstracted away by
machineprimitives.h
Define struct minithread {}

machineprimitives.h

Creating a stack: minithread_stack_create()
Takes two pointers to stack_pointer_t
Sets the pointed-at values to the SP for
that stack (the top), and a value you can
refer to the stack with (the bottom)
Free stacks by calling
minithread_stack_free(bottom)

machineprimitives.h

Initializing a stack: minithread_initialize_stack()
Pushes two functions onto the stack
The main body function
A cleanup function you should write

The main body returned, the thread should
clean up after itself
Remember, get a function pointer with
&functionName

machineprimitives.h

Swapping stacks: minithread_switch()
Takes 2 pointers to stack tops
Saves the current stack top in one

... after pushing the registers on
Sets the current stack pointer to the other

... and pops the registers off

Bootstrapping

minithread_system_initialize
Should allocate datastructures as needed
Should create a thread for mainproc
Need an idle thread

Allocate it
Use the existing thread

Part 3: Scheduling
minithread_yield()

Should pick the next thread to run and
then swap it in

Picking the thread
Round robin: use your queue

When a thread yields, enqueue it and
run the next thread on the queue

Challenge: Implement blocking

Semaphores

Simple synchronization primitive
A value and two operator functions
P(): Decrement the value

If value < 1, wait until another thread V()s
V(): Increment the value

If a thread is waiting, inform it

Semaphores

Perfect for describing producer/consumer
When an object is created you V
When an object is consumed you P
A queue can be used to store the objects

The semaphore ensures an empty
queue won’t be read from.

Part 4: Semaphores

Fill in the blanks: synch.c/.h
Define struct semaphore {}

You can’t assume your functions won’t get
interrupted

Use atomic primitives in
machineprimitives.h

Part 4: Semaphores

Synchronizing access
Simplest way: Implement a lock around
all value accesses.

if(!atomic_test_and_set(lock))
atomic_clear(lock)

Turn off interrupts: interrupts.h
Can be dangerous

Part 4: Semaphores

How does a thread that P()ed wait for a V()?
Busywaiting

Can we decrement?
If not, minithread_yield()

Blocking
Needs to be tied to thread implementation
Optional approach

Part 5: The Barber Shop

Demonstrate your work
We have a barber
He shaves customers one at a time
Customers arrive and wait in the waiting
room until the barber is ready
If there aren’t any customers, the barber
takes a nap until a customer arrives

Part 5: The Barber Shop

Your Implementation
... should utilize threads
... should utilize queues/semaphores
... should print out a sequence of events

Represent the barber and each customer as
a thread
Represent the waiting room as a queue

